Appendix C

Photographs

Disked ruderal grassland in the southwest part of the site, looking northeast; 04/07/21.

Disked ruderal grassland in the southeast part of the site, looking northwest; 04/27/21.

Pond P-14, looking northwest; 04/07/21. This former golf course pond receives storm water and nuisance water from the adjacent subdivison and holds water almost year-round.

Pond P-13, looking southwest; 04/07/21. This former golf course pond receives storm water and nuisance water from the adjacent subdivision and supports emergent wetland vegetation and trees.

Pond P-5, looking west; 04/19/21. This pond receives substantial landscape irrigation runoff from the community center to the west and holds water year-round during most years.

Horse Creek, which is adjacent to the north edge of the site, looking west; 04/07/21. Treated storm water from the north part of the Greentree Project will discharge to Horse Creek via an existing outfall.

Ulatis Creek, which is adjacent to the south edge of the site, looking southwest; 04/27/21.

Storm drain outfall in Ulatis Creek adjacent to the southwest corner of the site, looking southeast; 04/27/21. Treated storm water from the southwest part of the Greentree Project will be discharged through this outfall.

Constructed Ditch D-9, looking southwest; 04/27/21. This ditch carries storm water from the adjacent neighborhood to Pond P-2. Water from this ditch passes through the network of ponds and ditches and discharges to Old Ulatis Creek.

Constructed Ditch D-7, looking north along Leisure Town Road from adjacent to the City's sewer station; 04/27/21.

Pond P-2, looking east; 04/07/21. This pond is dry throughout much of the summer during most years.

Seasonal Wetland SW-6, looking southwest; 04/07/21. The central part of this wetland appears to pond water to only a few inches deep for a few days after heavy rain events.

Swainson's hawk nest tree just northwest of the intersection of Sequoia Avenue and Leisure Town Road, looking east; 04/27/21.

Swainson's hawk incubating eggs in the nest on April 27, 2021.

Pair of burrowing owls perched adjacent to a burrow on the north side of Gilley Way, looking southwest; 03/12/21.

Burrow south of Gilley Way that the pair shown above chose for nesting; 05/13/21. The northern burrow appears to be a "satellite" burrow used by this pair.

Burrowing owl (circled) perched in the west natal burrow, looking west; 03/25/21. The owl was turning its head erratically and appeared irritated by vehicle off-loading and weed-eaters across the street.

Dung, animal parts, and garbage "decorating" the burrow entrance; 05/13/21. Chirping owlets were heard in the burrow after an adult burrowing owl was observed taking a mouse in to the burrow.

Blue elderberry shrub No. 15, looking southwest; 04/07/21. No valley elderberry longhorn beetles or shrubs with evidence of occupancy were observed.

Blue elderberry shrub No. 16, looking southwest; 04/07/21. The shrub is on the interior bank of the Old Ulatis Creek channel.

Appendix D

Plants and Wildlife Observed

Table D-1 Plants Observed During March and April 2021

Gymnosperms

Cupressaceae - Cypress Family

Cupressus sempervirens Italian cypress

Pinaceae - Pine Family

Cedrus deodara

Deodar cedar

Pinus sp.

Ornamental Pine

Angiosperms - Dicots

Adoxaceae - Muskroot Family

Sambucus nigra Elderberry

Amaranthaceae

Amaranthus albus Tumbleweed

Apiaceae - Carrot Family

Conium maculatum Poison hemlock Foeniculum vulgare Sweet fennel

Apocynaceae - Dogbane/Milkweed Family

Nerium oleander

Vinca major

Oleander

Periwinkle

Asclepias fascicularis whorled milkweed

Araliaceae - Ginseng Family

Hedera helix English ivy

Asteraceae (Compositae) - Sunflower Family

Achyrachaena mollis Blow-wives

Artemisia douglasianaCalifornia mugwortBaccharis pilularisCoyote brushCarduus pycnocephalusItalian thistleCentaurea solstitialisYellow starthistleCentromadia fitchiiFitch's spikeweed

Cichorium intybus Chicory
Cirsium vulgare Bull thistle

Cotula coronopifolia Common brass-buttons

Dittrichia graveolens Stinkwort

Erigeron canadensisCanadian horseweedGrindelia camporumGreat Valley gumplantHelminthotheca echioidesBristly ox-tongueHeterotheca grandifloraTelegraph weedLactuca serriolaPrickly lettuce

Leontodon saxatilis Long-beaked hawkbit

Matricaria discoideaPineapple-weedMicroseris douglasii subsp. douglasiiDouglas' silverpuffsSenecio vulgarisCommon groundsel

Silybum marianum Milk thistle

Sonchus asper subsp. asper
Sonchus oleraceus
Common sow-thistle
Taraxacum officinale
Common dandelion
Tragopogon porrifolius
Common salsify
Xanthium spinosum
Xanthium strumarium
Cocklebur

Berberidaceae

Nandina domestica Sacred bamboo

Boraginaceae - Borage Family

Amsinckia menziesii Rancher's fireweed

Plagiobothrys stipitatus Stalked popcorn-flower

Brassicaceae (Cruciferae) - Mustard Family

Brassica nigra
Brassica rapa
Field mustard
Capsella bursa-pastoris
Shepherd's purse
Hirschfeldia incana
Short-podded mustard
Lepidium latifolium
Broadleaf pepperweed
Lepidium latipes
Dwarf peppergrass
Lepidium nitidum
Shining peppergrass

Raphanus sativus Wild radish

Sinapis arvensis Charlock mustard
Sisymbrium irio London rocket

Cactaceae - Cactus Family

Opuntia sp. Opuntia

Caprifoliaceae - Honeysuckle Family

Lonicera japonica Japanese honeysuckle

Caryophyllaceae - Pink Family

Cerastium glomeratum Sticky mouse-ear chickweed

Spergularia rubra Ruby sand-spurrey
Stellaria media Common chickweed

Chenopodiaceae - Goosefoot Family

Chenopodium album White pigweed Salsola tragus Russian-thistle

Convolvulaceae - Morning-Glory Family

Convolvulus arvensis Bindweed

Cucurbitaceae - Gourd Family

Marah fabacea California manroot

Euphorbiaceae - Spurge Family

Croton setigerTurkey mulleinEuphorbia oblongataEggleaf spurgeTriadica sebiferaChinese tallow tree

Fabaceae (Leguminosae) - Legume Family

Acmispon americanusSpanish lotusLotus corniculatusBird's-foot trefoilLupinus bicolorMiniature lupineMedicago polymorphaCalifornia burcloverMelilotus albusWhite sweetcover

Melilotus indicus Annual yellow sweetclover

Trifolium depauperatum

Trifolium hirtum

Rose clover

Trifolium microcephalum

*Trifolium repens

*Vicia sativa

Vicia villosa

*Winter vetch

Fagaceae - Oak Family

Quercus lobata Valley oak

Geraniaceae - Geranium Family

Erodium botrysBroad-leaf filareeErodium cicutariumRed-stem filareeGeranium dissectumCut-leaf geranium

Juglandaceae - Walnut Family

Juglans hindsii Northern California black walnut

Juncaceae

Juncus balticus Baltic rush

Juncus bufonius Common toad rush

Lamiaceae (Labiatae) - Mint Family

Lamium amplexicauleGiraffe headMarrubium vulgareWhite horehoundRosmarinus officinalisRosemary

Lythraceae - Loosestrife Family

Lythrum hyssopifolia Hyssop loosestrife

Malvaceae - Mallow Family

Malva parvifloraCheeseweedMalvella leprosaAlkali mallow

Martyniaceae

Proboscidea louisianica Ram's horn

Montiaceae - Miner's Lettuce Family

Calandrinia menziesii Red maids

Moraceae - Mulberry Family

Ficus carica Common fig

Morus alba White mulberry

Myrsinaceae - Myrsine Family

Lysimachia arvensis Scarlet pimpernel

Myrtaceae - Myrtle Family

Eucalyptus camaldulensis Red gum
Eucalyptus globulus Blue gum

Oleaceae - Olive Family

Fraxinus sp. Ash
Ligustrum sp. Privet
Olea europaea Olive

Onagraceae - Evening Primrose Family

Epilobium brachycarpum Summer cottonweed Epilobium ciliatum Hairy willow-herb

Orobanchaceae

Castilleja attenuate Narrow leaved owl's clover

Triphysaria eriantha Butter 'n' eggs

Papaveraceae - Poppy Family

Eschscholzia californica California poppy

Phrymaceae

Erythranthe guttata Seep monkey flower

Plantaginaceae - Plantain Family

Plantago erectaCalifornia plantainPlantago lanceolataEnglish plantainPlantago majorCommon plantain

Polygonaceae - Buckwheat Family

Persicaria hydropiperoidesFalse waterpepperPolygonum aviculareCommon knotweed

Rumex acetosellasheep sorrelRumex crispusCurly dockRumex pulcherFiddle dockRumex salicifoliusWillow dock

Ranunculaceae

Ranunculus californicus California buttercup

Rosaceae - Rose Family

Cotoneaster sp. Cotoneaster Prunus spp.. Prunus

Rosa californica California rose

Rosa sp. Rose

Rubus armeniacus Himalayan blackberry

Rubiaceae - Madder Family

Galium aparine Goose grass

Salicaceae - Willow Family

Populus alba White poplar

Populus fremontii Fremont cottonwood

Populus nigraLombardy poplarSalix exiguaNarrow-leaved willowSalix gooddingiiGoodding's black willow

Salix laevigata Red willow Salix lasiolepis Arroyo willow

Scrophulariaceae

Verbascum blattaria Moth mullein

Simaroubaceae - Quassia Family

Ailanthus altissima Tree of heaven

Verbenaceae - Vervain Family

Phyla nodiflora Common frog-fruit

Viscaceae - Mistletoe Family

Phoradendron leucarpum subsp. tomentosum Oak mistletoe

Angiosperms - Monocots

Alismataceae - Water-Plantain Family

Alisma triviale California water plantain

Amaryllidaceae - Amaryllis Family

Agapanthus orientalis Lilly-of-the-Nile

Arecaceae (Palmae) - Palm Family

Washingtonia filifera California fan palm

Cyperaceae - Sedge Family

Cyperus eragrostis Tall flatsedge

Poaceae (Gramineae) - Grass Family

Avena fatua Wild oat

Briza minor Small quaking grass

Bromus diandrus Ripgut grass Bromus hordeaceus Soft chess Bromus rubens Red brome Crypsis schoenoides Swamp grass Cynodon dactylon Bermudagrass Dactylis glomerata Orchard grass Echinochloa crus-galli Barnyard grass Elymus caput-medusae Medusahead Elymus triticoides Beardless wildrye

Festuca arundinacea Tall fescue

Festuca myuros Rattail sixweeks grass

Festuca perennis Italian ryegrass

Hordeum marinum subsp. gussoneanum Mediterranean barley

Hordeum murinum subsp. leporinumHare barleyPaspalum dilatatumDallis grassPhalaris aquaticaHarding grass

Phalaris paradoxa
Poa annua
Polypogon monspeliensis
Setaria verticillate
Sorghum halepense

Themidaceae

Brodiaea elegans
Triteleia hyacinthina
Typhaceae - Cattail Family

Typha angustifolia Typha latifolia Paradox canary-grass Annual bluegrass Annual beard grass Hooked bristlegrass Johnsongrass

Harvest brodiaea
Wild hyacinth

Narrow-leaved cattail Broad-leaved cattail

TABLE D-2 WILDLIFE SPECIES DOCUMENTED IN THE SITE

Birds

Great blue heron Ardea herodias
Great egret Ardea alba
Snowy egret Egretta thula

Canada goose Branta canadensis

Mallard Anas platyrhynchos

Hooded merganser Lophodytes cucullatus

Turkey vulture Cathartes aura

Wild turkey

White-tailed kite

Swainson's hawk

Cooper's hawk

Red-tailed hawk

American kestrel

Callipepla californica

Turkey

Killdeer

California quali

Meleagris gallopavo

Charadrius vociferous

Larus californicus

Common snipe Gallinago gallinago

Rock dove Columba livia

Mourning dove Zenaida macroura
Great-horned owl Bubo virginianus
Burrowing owl Athene cunicularia

Anna's hummingbird Calypte anna

Belted kingfisher Megaceryle alcyon
Northern flicker Colaptes auratus
Western kingbird Tyrannus verticalis
Violet-green swallow Tachycineta thalassina

Green-backed heron

Tree swallow

Black phoebe

Butorides virescens

Tachycineta bicolor

Sayornis nigricans

TABLE 2 (Continued) WIDLIFE SPECIES DOCUMENTED IN THE SITE

Say's phoebe Sayornis saya

California scrub jay Aphelocoma coerulescens

Yellow-billed magpie Pica nuttalli

American crow

American bushtit

Ruby-crowned kinglet

American robin

Northern mockingbird

European starling

Corvus brachyrhynchos

Psaltriparus minimus

Regulus calendula

Turdus migratorius

Mimus polyglottos

Sturnus vulgaris

Yellow-rumped warbler Setophaga coronata

California towhee Pipilo crissalis

White-crowned sparrow Zonotrichia leucophrys
Red-winged blackbird Agelaius phoeniceus
Western meadowlark Sturnella neglecta

Brewer's blackbird Euphagus cyanocephalus

Lesser goldfinch Spinus psaltria
American goldfinch Carduelis tristis

House finch Carpodacus mexicanus
House sparrow Passer domesticus

Mammals

Coyote Canis latran

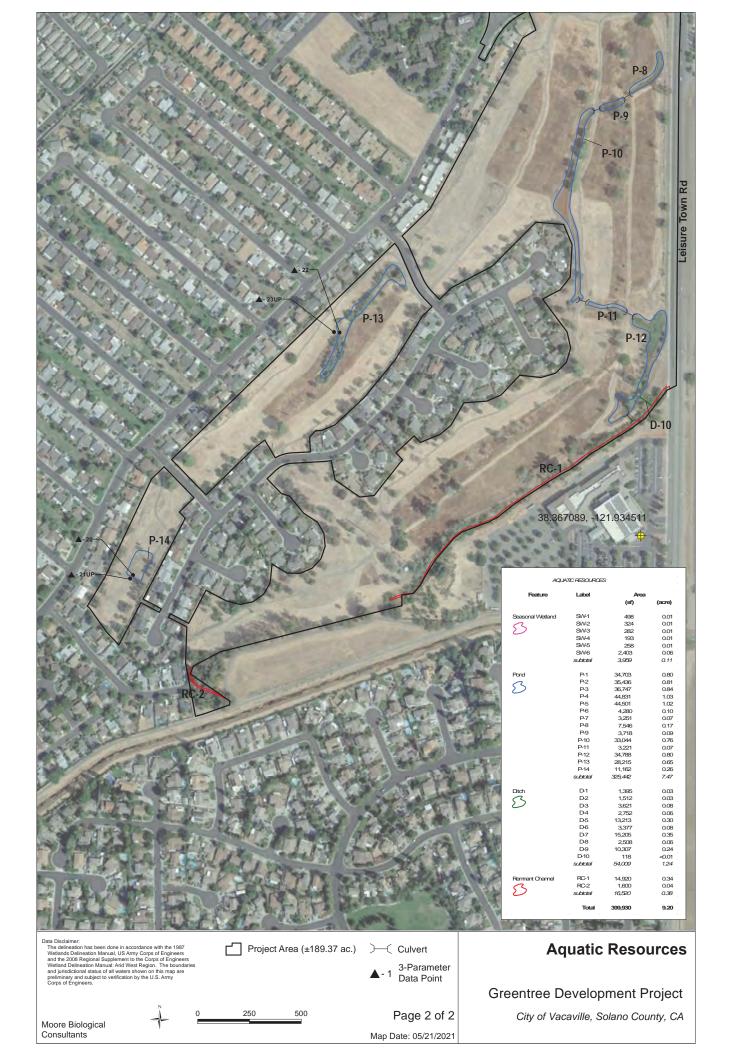
Black-tailed hare Lepus californicus

Raccoon *Procyon lotor*Western gray squirrel *Sciurus griseus*

California ground squirrel Spermophilus beecheyi

Bottae's pocket gopher Thomomys bottae

Reptiles and Amphibians


Western fence lizard Sceloporus occidentalis

Pacific chorus frog Pseudacris regilla

Appendix E

Aquatic Resources Map

Appendix F

Special-Status Plant Survey Report

May 18, 2021

Diane S. Moore, M.S. Moore Biological Consultants 10330 Twin Cities Road, Ste. 30 Galt, CA 95632

RE: Green Tree Golf Club Site Special-status Plant Survey

Dear Ms. Moore:

At your request, I have conducted a special-status plant survey to determine the presence/absence of special-status plant species on approximately 189.37 acres (the study area) that includes the former Green Tree Golf Club in Vacaville, Solano County, California. The former golf club comprises approximately 156 acres of the study area (Figure 1). The study area occurs between 80- and 95-feet elevation and is bordered to the north by Horse Creek, to the east by Leisure Town Road, to the west by the extension of the Leisure Town Retirement Community, and to the south by what was formerly known as Old Ulatis Creek (Figure 2).

The former golf course was active between 1961 and its closure in 2016. Most of the property has been disked annually since the closure. The study area is comprised of primarily ruderal annual vegetation. Golf course remnant features include abandon ponds and wetlands, ornamental trees, golf cart pathways, and other infrastructure.

The property is currently proposed for a mixed-use development. The survey was conducted to update work conducted by others in 2016 and 2019.

METHODS

Surveys

Field surveys were conducted on March 30-31 and April 16, 2021 by Jeff Glazner. The entire site was observed with emphasis on areas that were not ruderal grassland. The survey was floristic in nature with emphasis on habitats that could support any of the species listed in Table 1. Plant species observed were recorded and are presented in Appendix A.

Oueries

The California Natural Diversity Data Base (CNDDB) (2021) was queried prior to conducting the rare pant survey. The six-quadrangle search area included the Elmira, Fairfield North, Mt. Vaca, Allendale, Dixon, and Dozier USGS quadrangles. Salix also queried the California Native Plant Society Inventory (CNPS 2021) for reported occurrences

of special-status plant species within the six-quad area, and the U.S. Fish and Wildlife Service Information for Planning and Consultation database for the region surrounding the study area. Figure 3 illustrates the 13 special-status plant species occurrences reported by the CNDDB within a 5-mile radius of the study area.

Of the 40 plant species identified in the CNDDB, CNPS, and IPaC queries (Appendix B), it was determined that 35 have no potential to occur due to the lack of any suitable habitat (such as vernal pools, coastal wetlands or marshes, wooded slopes, among others) or suitable substrates (such as saline or alkaline conditions, or sepentinite, among others). These plants with no likelihood to occur are summarized in Table 1 below. Ten (10) plants for which there are reported occurrences within a 5-mile radius of the site (Figure 3) are marked with an asterisk (*).

Table 1				
Special-status Plant Species with No Potential to Occur within Green Tree Study Area				
Common name	on name Taxon Fed/State/CNI status		Habitat/soil required	
Western viburnum	Viburnum ellipticum	-/-/2B.3	Chaparral; cismontane woodland; lower montane coniferous forest. North-facing slopes	
Bolander's waterhemlock	Cicuta maculata bolanderi	-/-/2B.1	Marshes and swamps (coastal, fresh, or brackish)	
Mason's lilaeopsis	Lilaeopsis masonii	-/CR/1B.1	Marshes and swamps (brackish or freshwater); riparian scrub.	
Alkali-sink goldfields	Lasthenia chrysantha	-/-/1B.1	Vernal pools, wet saline flats	
Contra Costa goldfields*	Lasthenia conjugens	FE/-/1B.1	Valley and foothill grassland (mesic); vernal pools	
Coulter goldfields	Lasthenia glabrata coulteri	-/-/1B.1	Marshes and swamps (coastal salt); playas; vernal pools.	
Heckard's peppergrass	Lepidium latipes heckardii	-/-/1B.1	Valley and foothill grassland (alkaline flats)	
Heartscale*	Atriplex cordulata cordulata	-/-/1B.2	Meadows and seeps (saline or alkaline); chenopod scrub; valley and foothill grassland (sandy)	
Brittlescale	Atriplex depressa	-/-/1B.2	Chenopod scrub; playas; valley and foothill grassland; [alkaline or clay]	
Vernal pool smallscale	Atriplex persistens	-/-/1B.2	Vernal pools (alkaline)	
San Joaquin spearscale*	Extriplex [Atriplex] joaqinana	-/-/1B.2	Chenopod scrub; meadows; valley and foothill grassland; [alkaline]	

Table 1 Special-status Plant Species with No Potential to Occur within Green Tree Study Area

within Green Tree Study Area				
Common name	Taxon	Fed/State/CNPS status	Habitat/soil required	
Ferris' milkvetch	Astragalus tener ferrisiae	Meadows (vernally mesic); -/-/1B.1 valley and foothill grassland (subalkaline flats)		
Alkali milkvetch*	Astragalus tener tener	-/-/1B.2	Playas; valley and foothill grassland (adobe clay), vernal pools (alkaline)	
Delta tule pea	Lathyrus jepsonii jepsonii	-/-/1B.2 Marshes and swamps (freshwater and brackish)		
Showy Indian clover*	Trifolium amoenum	FE/-/1B.1	Coastal bluff scrub; Valley and foothill grassland (sometimes serpentinite)	
Saline clover	Trifolium hydrophilum	-/-/1B.2	Marshes and swamps; valley and foothill grassland (mesic, alkaline); vernal pools	
Mt. Diablo fairy lantern	Calochortus pulchellus	-/-/1B.2	Chaparral; cismontane woodland; valley and foothill grassland, wooded slopes	
Fragrant fritillary	Fritillaria liliacea	-/-/1B.2	Coastal prairie; coastal scrub; valley and foothill grassland; [often serpentinite]	
Adobe-lily*	Fritillaria pluriflora	-/-/1B.2	Chaparral; cismontane woodland; valley and foothill grassland; [often adobe, generally serpentine of interior foothills]	
Brewer's dwarf flax*	Hesperolinon breweri	-/-/1B.2	Chaparral; cismontane woodland; valley and foothill grassland; [mostly serpentinite].	
Wooly rose-mallow	Hibiscus lasiocarpos occidentalis	-/-/1B.2	Marshes and swamps (freshwater).	
Keck's checkerbloom*	Sidalcea keckii	-/-/1B.1	Cismontane woodland; valley and foothill grassland; [serpentinite]	
Hispid salty bird's- beak	Chloropyron molle hispidum	-/-/1B.1	Meadows; playas; [alkaline]	
Bogg's Lake hedge- hyssop	Gratiola heterosepala	-/CE/1B.2	Vernal pools	
Colusa grass	Neostapfia colusana	FT/CE/1B.1	Vernal pools	

Table 1				
Special-status Plant Species with No Potential to Occur within Green Tree Study Area				
Common name	Taxon	Fed/State/CNPS status	Habitat/soil required	
San Joaquin Valley Orcutt grass	Orcuttia inaequalis	FT/CE/1B.1	Vernal pools	
California alkali grass	Puccinellia simplex	Alkaline, vernally mesic; sin flats, lake margins. Chenop scrub, meadows and seeps, valley and foothill grassland vernal pools		
Crampton's tuctoria	Tuctoria mucronata	FE/CE/1B Vernal pools.		
Woolly-headed gilia	Gilia capitata tomentosa	-/-/1B.1	Coastal bluff scrub (rocky, outcrops)	
Baker's navarretia*	Navarretia leucocephala bakeri	-/-/1B.1	Cismontane woodland; lower montane coniferous forest; meadows (mesic); valley and foothill grassland; vernal pools	
Slender-leaved pondweed	Stuckenia filiformis alpina	-/-/2B.2	foothill grassland; vernal pools. Marshes and swamps (assorted shallow freshwter)	
Recurved larkspur*	Delphinium recurvatum	-/-/1B.2	Chenopod scrub; cismontane woodland; valley and foothill grassland; [alkaline]	
Little mousetail	Myosurus minimus apus	-/-/3	Vernal pools (alkaline)	
Delta mudwort	Limosella australis	-/-/2B.1	Vernal pools (alkaline). Usually mud banks; marshes and swamps (freshwater or brackish); riparian scrub	
Status FE - Federal Endangered CE - California Endangered CR - California Rare		CNPS (California Native Plant Society): Rank 1B - Plants rare, threatened, or endangered in California and elsewhere Rank 2B - Plants rare, threatened, or endangered in California, more common elsewhere Rank 3 - Plants about which more information is needed, a review list RED Code 1 - Seriously endangered (>80% of occurrences threatened) 2 - Fairly endangered (20 to 80% of occurrences threatened)		

It was determined that five (5) of the 40 species identified in Appendix B have some potential, but are unlikely, to occur due to the presence of very limited or minimal suitable habitat on the site. These five species formed the target list for this special-status species

survey and include those listed in Table 2 below. Three (3) plants for which there are reported occurrences within a 5-mile radius of the site (Figure 3) are marked with an asterisk (*).

Table 2					
Special-status Plant Species with SOME Potential to Occur within Green Tree Study Area					
Common name	Taxon	Fed/State/CNPS status	Habitat/soil required	Likelihood to Occur	
Pappose tarplant	Centromadia parryi parryi	-/-/1B.2	Coastal prairie; meadows and seeps; marshes and swamps; vernally wet grassland (sometimes alkaline).	Unlikely. Species requires alkaline conditions which are minimal on the site.	
Carquinez goldenbush	Isocoma arguta	-/-/1B.1	Valley and foothill grassland (alkaline).	Unlikely. Species requires alkaline conditions which are minimal on the site.	
Bearded-nut popcornflower*	Plagiobothrys hystriculus	-/-/1B.1	Valley and foothill grasslands (mesic); vernal pools.	Unlikely. Marginal habitat present in northern area grassland. No vernal pools.	
Dwarf downingia*	Downingia pusilla	-/-/2B.2	Vernal pools and seasonal wetlands	Unlikely. Marginal habitat present in seasonal wetland.	
Legenere*	Legenere limosa	-/-/1B.1	Vernal pools and seasonal wetlands.	Unlikely. Marginal habitat present in seasonal wetland.	

CNPS (California Native Plant Society):

Rank 1B - Plants rare, threatened, or endangered in California and elsewhere

Rank 2B - Plants rare, threatened, or endangered in California, more common elsewhere RED Code

- 1 Seriously endangered (>80% of occurrences threatened)
- 2 Fairly endangered (20 to 80% of occurrences threatened)

FINDINGS

Soils

Five soil units have been mapped within the study area, as illustrated in Figure 4. The soil units include the following (*USDA Natural Resources Conservation Service Web Soil Survey for Solano County, NRCS* 2021).

Capay silty clay loam, 0 percent slopes

The Capay component makes up 85 percent of the map unit. Slopes are 0 to 0 percent. This component is on distal alluvial fans on valleys. The parent material consists of alluvium derived from igneous, metamorphic, and sedimentary rock. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is high. Shrink-swell potential is moderate. This soil is rarely flooded. It is occasionally ponded. A seasonal zone of water saturation is at 79 inches during January, February, March. Organic matter content in the surface horizon is about 2 percent. This soil does not meet hydric criteria. The calcium carbonate equivalent within 40 inches, typically, does not exceed 1 percent. There are no saline horizons within 30 inches of the soil surface. The soil has a maximum sodium adsorption ratio of 11 within 30 inches of the soil surface.

Capay clay, 0 percent slopes

The Capay component makes up 85 percent of the map unit. Slopes are 0 to 0 percent. This component is on basin floors on valleys. The parent material consists of flood basin silty and clayey alluvium derived from metamorphic and sedimentary rock over fan alluvium derived from metamorphic and sedimentary rock. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is moderately well drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is high. This soil is rarely flooded. It is frequently ponded. A seasonal zone of water saturation is at 60 inches during January, February. Organic matter content in the surface horizon is about 2 percent. This soil does not meet hydric criteria. The calcium carbonate equivalent within 40 inches, typically, does not exceed 1 percent. There are no saline horizons within 30 inches of the soil surface. The soil has a maximum sodium adsorption ratio of 11 within 30 inches of the soil surface.

Clear Lake clay, 0 to 2 percent slopes

The Clear Lake component makes up 85 percent of the map unit. Slopes are 0 to 2 percent. This component is on basin floors on valleys. The parent material consists of basin alluvium derived from igneous, metamorphic and sedimentary rock. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is poorly drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is moderate. Shrink-swell potential is very high. This soil is rarely flooded. It is frequently ponded. A seasonal zone of water saturation is at 12 inches during January, February. Organic matter content in the surface horizon is about 2 percent. This soil meets hydric criteria. The calcium carbonate equivalent within 40 inches, typically, does not

exceed 1 percent. The soil has a slightly saline horizon within 30 inches of the soil surface. The soil has a maximum sodium adsorption ratio of 9 within 30 inches of the soil surface.

Yolo loam, 0 to 4 percent slopes

The Yolo component makes up 85 percent of the map unit. Slopes are 0 to 4 percent. This component is on alluvial fans on valleys. The parent material consists of alluvium derived from metamorphic and sedimentary rock. Depth to a root restrictive layer is greater than 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately high. Available water to a depth of 60 inches (or restricted depth) is

high. Shrink-swell potential is low. This soil is rarely flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. This soil does not meet hydric criteria. There are no saline horizons within 30 inches of the soil surface. The soil has a maximum sodium adsorption ratio of 1 within 30 inches of the soil surface.

Yolo loam, clay substratum

The Yolo component makes up 85 percent of the map unit. Slopes are 0 to 2 percent. This component is on alluvial fans. The parent material consists of alluvium derived from sedimentary rock. Depth to a root restrictive layer, strongly contrasting textural stratification, is 40 to 60 inches. The natural drainage class is well drained. Water movement in the most restrictive layer is moderately low. Available water to a depth of 60 inches (or restricted depth) is high. Shrink-swell potential is moderate. This soil is not flooded. It is not ponded. There is no zone of water saturation within a depth of 72 inches. Organic matter content in the surface horizon is about 2 percent. This soil does not meet hydric criteria. There are no saline horizons within 30 inches of the soil surface.

Habitat Types

Four landcover types (habitats) are identified within the study area and are summarized below in Table 3 and illustrated in Figure 5. Representative site photos are presented as aerial oblique photos in Figures 6a-d.

Table 3 Landcover Types within the Green Tree Study Area		
Habitat	Approximate Acreage	
Ruderal Grassland	153.48	
Urban Woodland	10.83	
Urban	17.21	
Aquatic Resources	9.20	
Total (Woodland/Aquatic Resources 1.35 acre overlap)	189.37	

Ruderal

Approximately 153.48 acres of the study area are ruderal grassland – former golf course lands that are annually disked and/or mowed. All of the non-wetland grassland areas are occupied primarily by weedy grasses and forbs. The potential for special status plant species in the upland grasslands is very low due to the ongoing disturbance of regular disking, abundance of non-native Mediterranean species, and poor habitat quality. Dominant grasses are Italian wild oat (*Avena fatua*), soft chess (*Bromus hordeaceus*), ripgut brome (*Bromus diandrus*), hare barley (*Hordeum murinum*), Bermudagrass (*Cynodon dactylon*), ryegrass (*Festuca perennis*), filaree (*Erodium cicutarium*), Italian thistle (*Carduus pycnodephalus*), common groundsel (*Senecio vulgaris*), winter vetch (*Vicia villosa*), Spanish lotus (*Acmispon americanus*), bindweed (*Convolvulus arvensis*) and cut leaf geranium (*Geranium dissectum*).

Urban Woodland

The Urban Woodland habitat type is comprised of areas where there are clusters of trees large enough to create canopy coverage and sizable shaded areas. Four areas are identified within the study area as urban woodland. The urban woodland is a product of anthropogenic influences, primarily, the former golf course. Many Eucalyptus trees, ornamental pines and white poplar occur throughout the study area, along with many other non-native planted species. The largest of these woodlands occurs along the former Old Ulatis Creek corridor. There is a mix of native and non-native species along this mostly dry remnant channel.

Urban

Parking lots, buildings, cart paths and similar developed areas occur throughout the study area and are not habitat for special status species.

Aquatic Resources

Several constructed ponds and connecting drainages were embedded in the former golf course. These features have been abandoned and are not maintained anymore and are in an unmanaged condition. Most of the ponds appear to have a clay liner but most were dry or nearly dry during the spring surveys. A couple of features had standing water and a more aquatic flora. Common species observed in the former ponds include cocklebur (*Xanthium strumarium*), false waterpepper (*Persicaria hydropieroides*), curly dock (*Rumex crispus*), and swamp grass (*Crypsis schoenoides*).

Special-status Plants

Based on the 2021 queries described in the Methods section above, the disturbed condition of the habitat within the study area, and the results of the field surveys, it was determined that only the five species identified in Table 2 above had some potential, although unlikely, to occur within the study area due to the presence of marginal levels of suitable habitat. Three of those species had been reported to occur within a five-mile radius of the study area: bearded-nut popcornflower, dwarf downingia, and legenere, as illustrated in Figure 3. None of these, or any other special-status species were observed during the field surveys.

CONCLUSION

I conducted a rare plant survey of the 189.37-acre Green Tree study area in Vacaville, Solano County. Three field visits were conducted during March and April 2021, and no special-status species were detected on the property.

Please contact me if you would like to discuss these findings.

Sincerely,

Jeff Glazner

Principal Biologist/Botanist

Jeth eslym

Attachments:

Figure 1. USGS Site and Vicinity Map

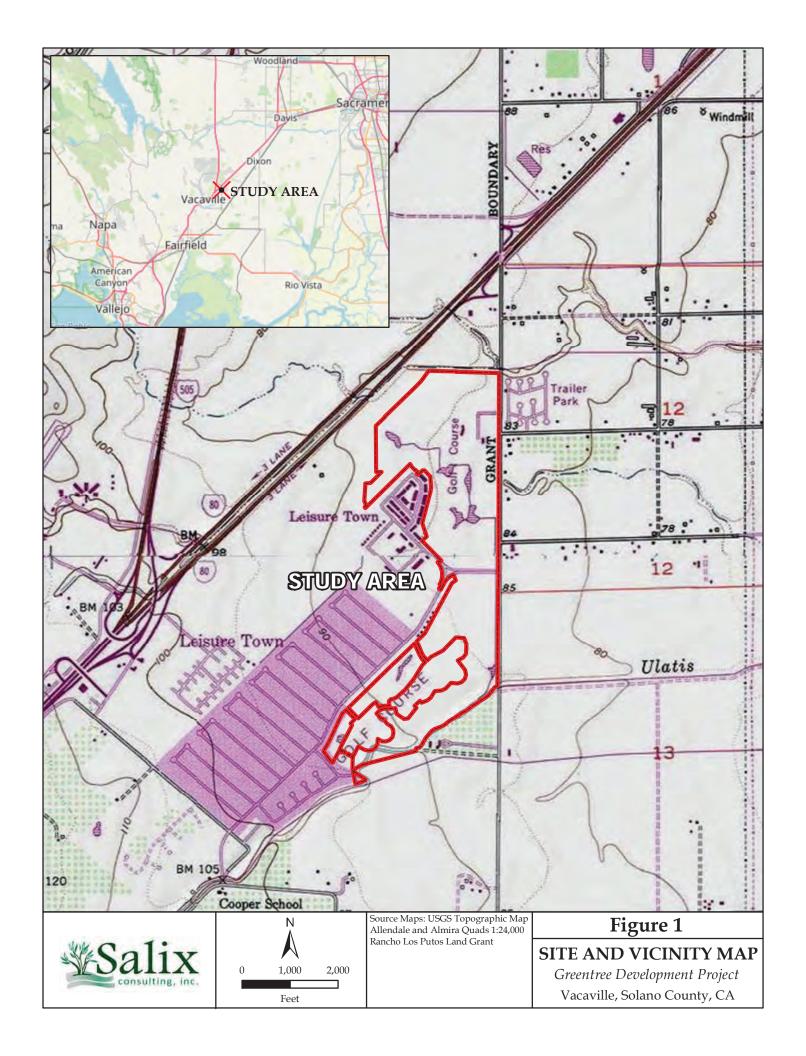
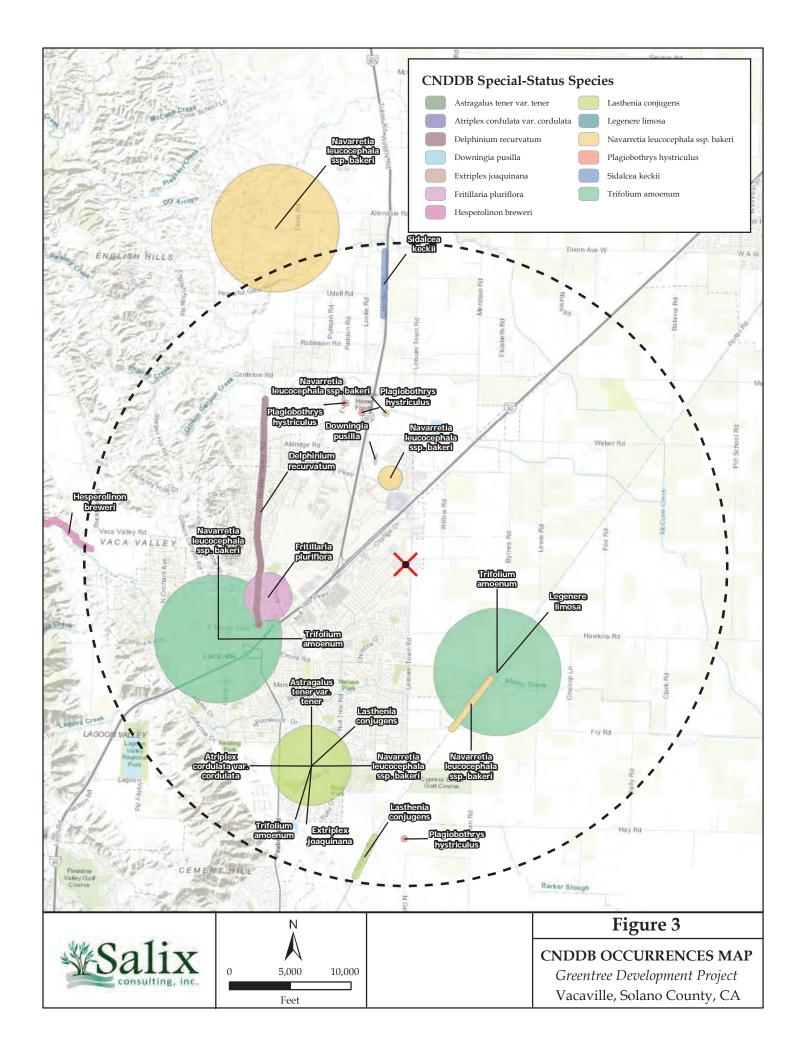
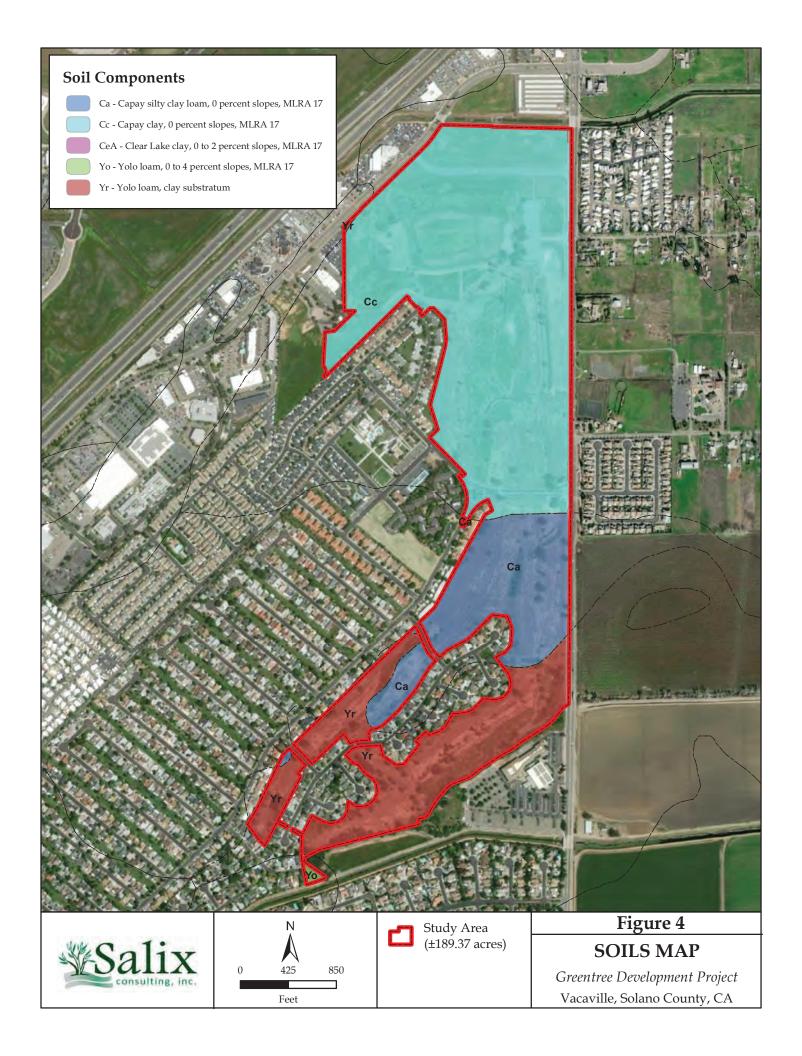

Figure 2. Aerial Photo

Figure 3. CNDDB Occurrence Map


Figure 4. Soils Map Figure 5. Habitat Map Figures 6a-6d. Aerial Site Photos


Appendix A. List of Plants Observed within the Study Area, 2021


Appendix B. Potentially-occuring Special-status Plants

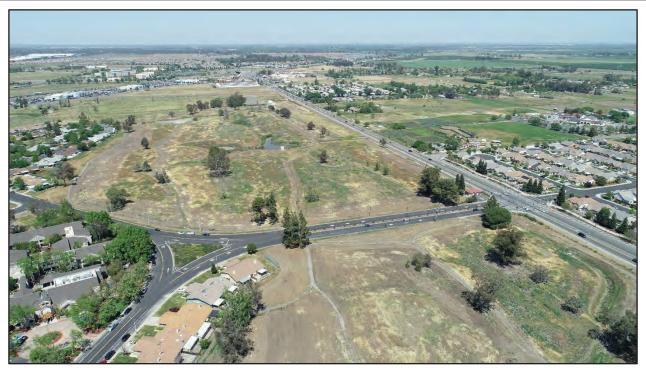
Looking west along Gilley Way towards I-80. *Photo Date 3-31-21*

Looking south over Gilley Way over former driving range. *Photo Date 3-31-21*

Figure 6a

AERIAL SITE PHOTOS

Looking south over middle area of site. *Photo Date 3-31-21*

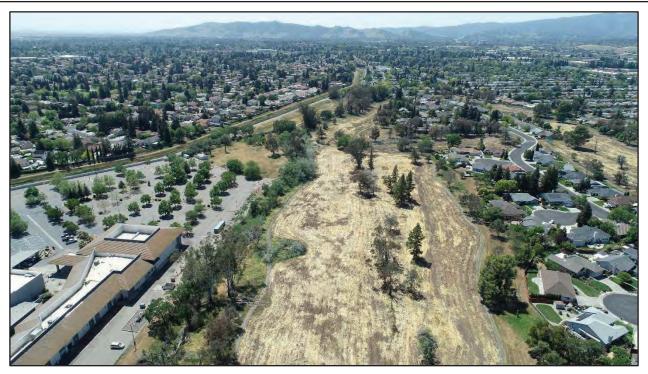


Looking northeast over Gilley Way and Leisure Town Road. *Photo Date 3-31-21*

Figure 6b

AERIAL SITE PHOTOS

Looking north over Sequoia Drive at northern area of site. *Photo Date 4-16-21*



Looking south along Leisure Town Road at pond complex. *Photo Date 4-16-21*

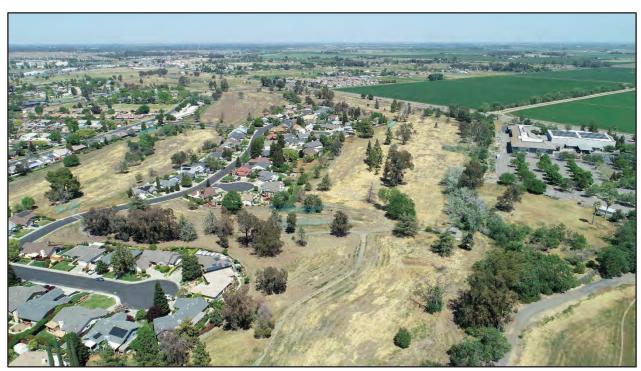


Figure 6c

AERIAL SITE PHOTOS

Looking southwest over southern portion of the study area. *Photo Date 4-16-21*

Looking northeast from southwestern portion of the study area. *Photo Date 4-16-21*

Figure 6d

AERIAL SITE PHOTOS

Appendix A

Green Tree Plants Observed March and April 2021

Gymnosperms

Cupressaceae - Cypress Family

Cupressus sempervirens Italian cypress

Pinaceae - Pine Family

Cedrus deodaraDeodar cedarPinus sp.Ornamental Pine

Angiosperms - Dicots

Adoxaceae - Muskroot Family

Sambucus nigra Elderberry

Amaranthaceae

Amaranthus albus Tumbleweed

Apiaceae - Carrot Family

Conium maculatum Poison hemlock
Foeniculum vulgare Sweet fennel

Apocynaceae - Dogbane/Milkweed Family

Nerium oleander
Vinca major
Periwinkle
Asclepias fascicularis
whorled milkweed

Araliaceae - Ginseng Family

Hedera helix English ivy

Asteraceae (Compositae) - Sunflower Family

Achyrachaena mollis
Artemisia douglasiana
Baccharis pilularis
Carduus pycnocephalus
Centaurea solstitialis
Centromadia fitchii
Citationia mugwort
Strating Cooperation Cooperation
Fitch's spikeweed
Citationia mugwort
Cooperation Cooperation
Cooperation Cooperation
Cooperation Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooperation
Cooper

Cichorium intybusChicoryCirsium vulgareBull thistle

Cotula coronopifolia Common brass-buttons

Dittrichia graveolens Stinkwort

Erigeron canadensis Canadian horseweed Grindelia camporum Great Valley gumplant Helminthotheca echioides Bristly ox-tongue Heterotheca grandiflora Telegraph weed Lactuca serriola Prickly lettuce Leontodon saxatilis Long-beaked hawkbit Matricaria discoidea Pineapple-weed Microseris douglasii subsp. douglasii Douglas' silverpuffs Senecio vulgaris Common groundsel Silybum marianum Milk thistle

Sonchus asper subsp. asperPrickly sow-thistleSonchus oleraceusCommon sow-thistleTaraxacum officinaleCommon dandelionTragopogon porrifoliusCommon salsifyXanthium spinosumSpiny cockleburXanthium strumariumCocklebur

Berberidaceae

Nandina domestica Sacred bamboo

Boraginaceae - Borage Family

Amsinckia menziesii Rancher's fireweed

Plagiobothrys stipitatus Stalked popcorn-flower

Brassicaceae (Cruciferae) - Mustard Family

Brassica nigra Black mustard Field mustard Brassica rapa Capsella bursa-pastoris Shepherd's purse Hirschfeldia incana Short-podded mustard Lepidium latifolium Broadleaf pepperweed Lepidium latipes Dwarf peppergrass Lepidium nitidum Shining peppergrass Raphanus sativus Wild radish Sinapis arvensis Charlock mustard Sisymbrium irio London rocket

Cactaceae - Cactus Family

Opuntia sp. Opuntia

Caprifoliaceae - Honeysuckle Family

Lonicera japonica Japanese honeysuckle

Caryophyllaceae - Pink Family

Cerastium glomeratum Sticky mouse-ear chickweed

Spergularia rubraRuby sand-spurreyStellaria mediaCommon chickweed

Chenopodiaceae - Goosefoot Family

Chenopodium albumWhite pigweedSalsola tragusRussian-thistle

Convolvulaceae - Morning-Glory Family

Convolvulus arvensis Bindweed

Cucurbitaceae - Gourd Family

Marah fabacea California manroot

Euphorbiaceae - Spurge Family

Croton setigerTurkey mulleinEuphorbia oblongataEggleaf spurgeTriadica sebiferaChinese tallow tree

Fabaceae (Leguminosae) - Legume Family

Acmispon americanusSpanish lotusLotus corniculatusBird's-foot trefoilLupinus bicolorMiniature lupineMedicago polymorphaCalifornia burcloverMelilotus albusWhite sweetcover

Melilotus indicus Annual yellow sweetclover

 Trifolium depauperatum
 Dwarf sack clover

 Trifolium hirtum
 Rose clover

 Trifolium microcephalum
 Hairy clover

 *Trifolium repens
 White clover

 *Vicia sativa
 Common vetch

 Vicia villosa
 Winter vetch

Fagaceae - Oak Family

Quercus lobata Valley oak

Geraniaceae - Geranium Family

Erodium botrysBroad-leaf filareeErodium cicutariumRed-stem filareeGeranium dissectumCut-leaf geranium

Juglandaceae - Walnut Family

Juglans hindsii Northern California black walnut

<u>Juncaceae</u>

Juncus balticus

Juncus bufonius

Baltic rush

Common toad rush

Lamiaceae (Labiatae) - Mint Family

Lamium amplexicauleGiraffe headMarrubium vulgareWhite horehoundRosmarinus officinalisRosemary

Lythraceae - Loosestrife Family

Lythrum hyssopifolia Hyssop loosestrife

Malvaceae - Mallow Family

Malva parvifloraCheeseweedMalvella leprosaAlkali mallow

Martyniaceae

Proboscidea louisianica Ram's horn

Montiaceae - Miner's Lettuce Family

Calandrinia menziesii Red maids

Moraceae - Mulberry Family

Ficus carica Common fig

Morus alba White mulberry

Myrsinaceae - Myrsine Family

Lysimachia arvensis Scarlet pimpernel

Myrtaceae - Myrtle Family

Eucalyptus camaldulensis Red gum
Eucalyptus globulus Blue gum

Oleaceae - Olive Family

Fraxinus sp. Ash
Ligustrum sp. Privet
Olea europaea Olive

Onagraceae - Evening Primrose Family

Epilobium brachycarpumSummer cottonweedEpilobium ciliatumHairy willow-herb

<u>Orobanchaceae</u>

Castilleja attenuate Narrow leaved owl's clover

Triphysaria eriantha Butter 'n' eggs

Papaveraceae - Poppy Family

Eschscholzia californica California poppy

Phrymaceae

Erythranthe guttata Seep monkey flower

Plantaginaceae - Plantain Family

Plantago erectaCalifornia plantainPlantago lanceolataEnglish plantainPlantago majorCommon plantain

Polygonaceae - Buckwheat Family

Persicaria hydropiperoidesFalse waterpepperPolygonum aviculareCommon knotweedRumex acetosellasheep sorrelRumex crispusCurly dockRumex pulcherFiddle dockRumex salicifoliusWillow dock

Ranunculaceae

Ranunculus californicus California buttercup

Rosaceae - Rose Family

Cotoneaster sp.CotoneasterPrunus spp..PrunusRosa californicaCalifornia rose

Rosa sp. Rose

Rubus armeniacus Himalayan blackberry

Rubiaceae - Madder Family

Galium aparine Goose grass

Salicaceae - Willow Family

Populus albaWhite poplarPopulus fremontiiFremont cottonwoodPopulus nigraLombardy poplarSalix exiguaNarrow-leaved willowSalix gooddingiiGoodding's black willow

Salix laevigata Red willow Salix lasiolepis Arroyo willow

Scrophulariaceae

Verbascum blattaria Moth mullein

Simaroubaceae - Quassia Family

Ailanthus altissima Tree of heaven

Verbenaceae - Vervain Family

Phyla nodiflora Common frog-fruit

Viscaceae - Mistletoe Family

Phoradendron leucarpum subsp. tomentosum Oak mistletoe

Angiosperms - Monocots

Alismataceae - Water-Plantain Family

Alisma triviale California water plantain

Amaryllidaceae - Amaryllis Family

Agapanthus orientalis Lilly-of-the-Nile

Arecaceae (Palmae) - Palm Family

Washingtonia filifera California fan palm

Cyperaceae - Sedge Family

Cyperus eragrostis Tall flatsedge

Poaceae (Gramineae) - Grass Family

Avena fatua Wild oat

Briza minor Small quaking grass Bromus diandrus Ripgut grass Bromus hordeaceus Soft chess Bromus rubens Red brome Crypsis schoenoides Swamp grass Cynodon dactylon Bermudagrass Dactylis glomerata Orchard grass Echinochloa crus-galli Barnyard grass Elymus caput-medusae Medusahead

Festuca arundinacea Tall fescue

 Festuca myuros
 Rattail sixweeks grass

 Festuca perennis
 Italian ryegrass

Hordeum marinum subsp. gussoneanum Mediterranean barley

Beardless wildrye

Hordeum murinum subsp. leporinumHare barleyPaspalum dilatatumDallis grassPhalaris aquaticaHarding grass

Phalaris paradoxa Paradox canary-grass
Poa annua Annual bluegrass
Polypogon monspeliensis Annual beard grass
Setaria verticillate Hooked bristlegrass
Sorghum halepense Johnsongrass

Themidaceae

Elymus triticoides

Brodiaea elegans Harvest brodiaea
Triteleia hyacinthina Wild hyacinth

Typhaceae - Cattail Family

Typha angustifolia Narrow-leaved cattail
Typha latifolia Broad-leaved cattail

Appendix B

Family Taxon Common Name	Str	Status*	Flowering Period	Habitat	Probability on Project Site
Adoxaceae Viburnum ellipticum Western viburnum	Fed: State: CNPS:	- - Rank 2B.3	May-July	Chaparral; cismontane woodland; lower montane coniferous forest.	None. No suitable habitat. Site lacks shaded, wooded slopes.
Apiaceae (Umbelliferae) Cicuta maculata bolanderi Bolander's waterhemlock	Fed: State: CNPS:	- - Rank 2B.1	July-September	Marshes and swamps (coastal, fresh, or brackish). 0 to 200 meters.	None. No suitable habitat. Site lacks coastal wetlands.
Lilaeopsis masonii Mason's lilaeopsis	Fed: State: CNPS:	- CR Rank 1B.1	April-October	Marshes and swamps (brackish or freshwater); riparian scrub.	None. No suitable habitat. Site lacks tidal areas.
Asteraceae (Compositae) Centromadia parryi parryi Pappose tarplant	Fed: State: CNPS:	- - Rank 1B.2	May-November	Coastal prairie; meadows and seeps; marshes and swamps; vernally wet grassland (sometimes alkaline).	Unlikely. Species requires alkaline conditions which are minimal on the site.
Isocoma arguta Carquinez goldenbush	Fed: State: CNPS:	- - Rank 1B.1	August-December	Valley and foothill grassland (alkaline).	Unlikely. Species requires alkaline conditions which are minimal on the site.
Lasthenia chrysantha Alkali-sink goldfields	Fed: State: CNPS:	- - Rank 1B.1	February-June	Vernal pools, wet saline flats	None. No suitable habitat. Site lacks vernal pools, saline flats.

Appendix B

Family Taxon Common Name	Status*	Flowering Period	Habitat	Probability on Project Site
Lasthenia conjugens Contra Costa goldfields	Fed: FE State: - CNPS: Rank 1B.1	March-June	Valley and foothill grassland (mesic); vernal pools.	None. No suitable habitat. Site lacks vernal pools and wet meadows.
Lasthenia glabrata coulteri Coulter goldfields	Fed: - State: - CNPS: Rank 1B.1	February-June	Marshes and swamps (coastal salt); playas; vernal pools.	None. No suitable habitat. Site lacks saline conditions, vernal pools.
Symphyotrichum lentum Suisun Marsh aster	Fed: - State: - CNPS: Rank 1B.2	August-November	Marshes and swamps (brackish and fresh water)	Unlikely. Marginal habitat present in abandoned golf course pond,
Boraginaceae Plagiobothrys hystriculus Bearded-nut popcornflower	Fed: - State: - CNPS: Rank 1B.1	April-May	Valley and foothill grasslands (mesic); vernal pools.	Unlikely. Marginal habitat present in northern area grassland. No vernal pools.
Brassicaceae (Cruciferae) Lepidium latipes heckardii Heckard's peppergrass	Fed: - State: - CNPS: Rank 1B.2	April-May	Valley and foothill grassland (alkaline flats).	None. No suitable habitat. Site lacks alkaline soils.
Campanulaceae Downingia pusilla Dwarf downingia	Fed: - State: - CNPS: Rank 2B.2	March-May	Vernal pools and seasonal wetlands.	Unlikely. Marginal habitat present in seasonal wetland.

Appendix B

Family Taxon Common Name	Status*	*	Flowering Period	Habitat	Probability on Project Site
<i>Legenere limosa</i> Legenere	Fed: - State: - CNPS: Rank	- - nk 1B.1	April-June	Vernal pools and seasonal wetlands.	Unlikely. Marginal habitat present in seasonal wetland.
Chenopodiaceae Atriplex cordulata cordulata Heartscale	Fed: - State: - CNPS: Rank	- - nk 1B.2	April-October	Meadows and seeps; chenopod scrub; valley and foothill grassland (sandy); [saline or alkaline].	None. No suitableh abitat. Site lacks saline/alkaline areas.
Atriplex depressa Brittlescale	Fed:	- - ık 18.2	May-October	Chenopod scrub; playas; valley and foothill grassland; [alkaline or clay].	None. No suitable habitat. Site lacks saline/alkaline areas.
Atriplex persistens Vernal pool smallscale	Fed:	- - ık 1B.2	July-October	Vernal pools (alkaline).	None. No suitable habitat. Site lacks saline/alkaline areas, vernal pools.
Extriplex joaqinana San Joaquin spearscale	Fed: - State: - CNPS: Rank	- - ık 18.2	April-September	Chenopod scrub: meadows: valley and foothill grassland; [alkaline].	None. No suitable habitat. Site lacks alkaline areas.
Fabaceae (Leguminosae) Astragalus tener ferrisiae Ferris' milkvetch	Fed: - State: - CNPS: Rank	- - ık 1B.1	April-May	Meadows (vernally mesic); valley and foothill grassland (subalkaline flats).	None. No suitable habitat. Site lacks alkaline areas.

Appendix B

Family Taxon Common Name	Status*	Flowering Period	Habitat	Probability on Project Site
Astragalus tener tener Alkali milkvetch	Fed: - State: - CNPS: Rank 1B.2	March-June	Playas; valley and foothill grassland (adobe clay), vernal pools (alkaline).	None. No suitable habitat. Site lacks alkaline areas, vernal pools.
Lathyrus jepsonii jepsonii Delta tule pea	Fed: - State: - CNPS: Rank 1B.2	May-September	Marshes and swamps (freshwater and brackish).	None. No suitable habitat. Site lacks coastal marsh.
Trifolium amoenum Showy Indian clover	Fed: FE State: - CNPS: Rank 1B.1	April-June	Coastal bluff scrub; Valley and foothill grassland (sometimes serpentinite)	None. No suitable habitat. Site lacks mois heavy soils.
Trifolium hydrophilum Saline clover	Fed: - State: - CNPS: Rank 1B.2	April-June	Marshes and swamps; valley and foothill grassland (mesic, alkaline); vernal pools. 0-300 m.	None. No suitable habitat. Site lacks salt marsh, vemal pools.
Liliaceae Calochortus pulchellus Mt. Diablo fairy lantern	Fed: - State: - CNPS: Rank 1B.2	April-June	Chaparral; cismontane woodland; valley and foothill grassland.	None. No suitable habitat. Site lacks wooded slopes.
<i>Fritillaria liliacea</i> Fragrant fritillary	Fed: - State: - CNPS: Rank 1B.2	February-April	Coastal prairie; coastal scrub; valley and foothill grassland; [often serpentinite].	None. No suitable habitat. Site too disturbed and too distant from Coast.
Fritillaria pluriflora Adobe-lily	Fed: - State: - CNPS: Rank 1B.2	February-April	Chaparral; cismontane woodland; valley and foothill grassland; [often adobe, generally serpentine of interior foothills].	None. No sitable habitat. Site lacks serpentine on hills.

Appendix B

Family Taxon Common Name	Status*	Flowering Period	Habitat	Probability on Project Site
Linaceae Hesperolinon breweri Brewer's dwarf flax	Fed: - State: - CNPS: Rank 1B.2	May-July	Chaparral; cismontane woodland; valley and foothill grassland; [mostly serpentinite].	None. No suitable habitat. Site lacks chaparral, serpentinite.
Malvaceae Hibiscus lasiocarpos occidentalis Wooly rose-mallow	Fed: - State: - CNPS: Rank 1B.2	June-September	Marshes and swamps (freshwater).	None. No suitable habitat. Site lacks suitable marsh habitat.
Sidalcea keckii Keck's checkerbloom	Fed: FE State: - CNPS: Rank 1B.1	April-May	Cismontane woodland; valley and foothill grassland; [serpentinite].	None. No uitable habitat. Site lacks undisturbed grassy slopes
Orobanchaceae Chloropyron molle hispidum Hispid salty bird's-beak	Fed: - State: - CNPS: Rank 1B.1	June-September	Meadows; playas; [alkaline]. 1-155m.	None. No suitable habitat. Site lacks alkaline soils.
Plantaginaceae Gratiola heterosepala Bogg's Lake hedge-hyssop	Fed: - State: CE CNPS: Rank 1B.2	April-August	Vernal pools.	None. No suitable habitat. Site lacks vernal pools.
Poaceae (Gramineae) Neostapfia colusana Colusa grass	Fed: FT State: CE CNPS: Rank 1B.1	May-July	Vernal pools.	None. No suitable habitat. Site lacks vernal pools.

Appendix B

Family Taxon Common Name	δ	Status*	Flowering Period	Habitat	Probability on Project Site
Orcuttia inaequalis San Joaquin Valley Orcutt grass	Fed: State: CNPS:	FT CE Rank 1B.1	May-September	Vernal pools.	None. No suitable habitat. Site lacks vernal pools.
Puccinellia simplex California alkali grass	Fed: State: CNPS:	- - Rank 1B.2	March-May	Alkaline, vernally mesic; sinks, flats, lake margins. Chenopod scrub, meadows and seeps, valley and foothill grassland, vernal pools.	None. No suitable habitat. Site lacks alkaline areas.
Tuctoria mucronata Crampton's tuctoria	Fed: State: CNPS:	FE CE Rank 1B.	April-July	Vernal pools.	None. No suitable habitat. Site lacks vernal pools.
Polemoniaceae Gilia capitata tomentosa Woolly-headed gilia	Fed: State: CNPS:	- - Rank 1B.1	May-July	Coastal bluff scrub (rocky, outcrops). 15-155 m.	None. No suitable habitat. Site lacks coastal bluffs.
Navarretia leucocephala bakeri Baker's navarretia	Fed: State: CNPS:	- - Rank 1B.1	May-July	Cismontane woodland; lower montane coniferous forest; meadows (mesic); valley and foothill grassland; vernal pools.	None. No suitable habitat. Site lacks vernal pools.
Potamogetonaceae Stuckenia filiformis alpina Slender-leaved pondweed	Fed: State: CNPS:	FSW - Rank 2B.2	May-July	Marshes and swamps (assorted shallow freshwter).	None. No suitable habitat. Site lacks suitable aquatic habitat. Species occurs at higher elevation.

Appendix B

Family Taxon Common Name	Status	*ST	Flowering Period	Habitat	Probability on Project Site
Ranunculaceae Delphinium recurvatum Recurved larkspur	Fed: - State: - CNPS: Rank 1B.2	- - nnk 1B.2	March-June	Chenopod scrub; cismontane woodland; valley and foothill grassland; [alkaline].	None. No suitable habitat. Site lacks alkaline areas.
Myosurus minimus apus Little mousetail	Fed: State: CNPS: R	- - Rank 3.	March-June	Vernal pools (alkaline).	None. No suitable habitat. Site lacks alkaline areas.
Scrophulariaceae <i>Limosella australis</i> Delta mudwort	Fed: - State: - CNPS: Rank 2B.1	- - unk 2B.1	May-August	Usually mud banks; marshes and swamps (freshwater or brackish); riparian scrub	None. No suitable habitat. Site lacks intertidal flats.

*Status		
Federal: FE - Federal Endangered FT - Federal Threatened FPE - Federal Proposed Endangered FPT - Federal Proposed Threatened FC - Federal Candidate FSS - Forest Service Sensitive FSW - Forest Service Watchlist	State: CE - California Endangered CT - California Threatened CR - California Rare CSC - California Species of Special Concern	CNPS (California Native Plant Society - List.RED Code): Rank 1A - Extinct Rank 1B - Plants rare, threatened, or endangered in California and elsewhere Rank 2A- Plants extinct in California, but more common elsewhere Rank 2B - Plants rare, threatened, or endangered in California, more common elsewhere Rank 2 - Plants about which more information is needed, a review list Rank 3 - Plants about which more information is needed, a review list Rank 4 - Plants of limited distribution, a watch list RED Code 1 - Seriously endangered (>80% of occurrences threatened) 2 - Fairly endangered (<20 to 80% of occurrences threatened) 3 - Not very endangered (<20% of occurrences threatened)

Appendix G

Vernal Pool Branchiopod Survey Reports

PROTOCOL-LEVEL WET-SEASON SAMPLING

FOR

FEDERALLY-LISTED LARGE BRANCHIOPODS AT THE

GREENTREE DEVELOPMENT PROJECT, SOLANO COUNTY, CALIFORNIA

(USFWS# 2021-TA-0570)

Prepared for:

BRISCOE IVESTER & BAZEL, LLP 235 Montgomery Street, Suite 935 San Francisco, CA 94104 Contact: Peter Prows (415) 994-8991

Prepared by:

HELM BIOLOGICAL CONSULTING 4600 Karchner Road Sheridan, CA 95681 Contact: Brent Helm (530) 633-0220

PROTOCOL-LEVEL WET-SEASON SAMPLING FOR FEDERALLY-LISTED LARGE BRANCHIOPODS AT THE GREENTREE DEVELOPMENT PROJECT, SOLANO COUNTY, CALIFORNIA (USFWS# 2021-TA-0570)

INTRODUCTION

Helm Biological Consulting (HBC), a division Tansley Team, Inc., was contracted by Briscoe, Ivester, and Bazel, LLC to conduct protocol-level wet-season sampling for large branchiopods (fairy shrimp, tadpole shrimp, and clam shrimp) that are listed as threatened or endangered under the federal Endangered Species Act (e.g., vernal pool fairy shrimp [*Branchinecta lynchi*] and vernal pool tadpole shrimp [*Lepidurus packardi*]) at the Greentree Development Project (hereafter "Study Area").

The Study Area is comprised of approximately 189.37 acres and is located west of Leisure Town Road, southeast of Orange Drive, and north of Ulatis Creek, in the City of Vacaville, Solano County, California (Exhibit A). Additionally, the Study Area is located within an unsectioned portion of Township 6 North, Range 1 West, Mount Diablo Base and Meridian of the Allendale and Elmira U.S. Geological Survey 7.5-minute quadrangle maps (Exhibit A); approximate center coordinates (World Geodetic System 1984 [WGS84]) are: 38.3791°N, 121.9372°W). The Study Area consists of an abandoned golf course with small ephemeral pools in areas that were not leveled correctly during development and ponds that are associated with the adjacent residential community storm-water system.

The remainder of this report discusses the methods and results of the wet-season sampling for the presence of federally-listed large branchiopods at the Project.

"We certify that the information in this survey report and attached exhibits fully and accurately represents our work."

Brent P. Helm Signature Suf Well Date 05-21-2021

(TE-795930-10.2)

Sean M. O'Brien Signature Date <u>05-21-2021</u>

(TE-795930-10.2)

METHODS

Dr. Brent Helm and/or Mr. Sean O'Brien of HBC conducted seven rounds of protocol-level wetseason sampling during the 2020/2021 wet-season as follows:

1st round: December 22
2nd round: January 5
3rd round: January 19
4th round: February 5

5th round: February 19
6th round: March 5
7th round: March 19

The wet-season sampling was conducted under permit TE-795930-10.2 of Section 10(a)(1)(A) of the federal Endangered Species Act, 16 U.S.C. 1531 et seq., and its implementing regulations as authorized by the U.S. Fish and Wildlife Service (USFWS) (Appendix A). Methods generally followed USFWS's (2017) *Survey Guidelines for Listed Large Branchiopods* (hereafter "Survey Guidelines") for wet-season sampling.

Wet sampling was conducted in all basins (habitats) at the Study Area that had potential to support federally-listed large branchiopods. An aquatic resources map (Moore Biological Consultants 2021, Exhibit B), aerial imagery of the Study Area obtained from Google Earth[©] (2021), and other documents provided by the Client were utilized to target appropriate habitats for sampling. Habitats sampled that were not previously included on the aquatic resources map were mapped using a point in the center of the wetland with the aid of a handheld Global Positioning System (GPS) unit with sub meter accuracy and numbered chronologically with a HBC prefix.

Potential habitat for federally-listed large branchiopods is defined as any seasonal inundated depression that on average ponds water at a sufficient depth and duration for a listed large branchiopod to complete its lifecycle (generally 2.0 inches or greater in depth for 14 or more consecutive days for fairy shrimp and 30 or more consecutive days for tadpole shrimp) (USFWS 2017). Generally these habitats occur within the California Floristic Province at elevations below 1,707 meters in the Coast Ranges (CNDDB #178) and below 914 meters for the rest of California and Oregon (CNDDB #244) and Oregon (USFWS 2017). Habitats that swiftly flow water (e.g., creeks, streams, and ephemeral drainages), semi-to-permanently inundated areas that support perennial population of predators (e.g., bullfrogs, fish, and crayfish), and habitats that receive water during the dry season (i.e., artificial water sources) were not generally considered suitable habitat for federally-listed large branchiopods (USFWS 2017).

According the Survey Guidelines, the Study Area is within Survey Zone A (Southern Oregon, Sacramento Valley, San Francisco Bay Area, North Coast Ranges, Northern Sierra Valley Foothills, Cascade Range foothills, and South Coast Ranges) (USFWS 2017). Therefore wetseason sampling was initiated 14 days after any of the habitats on site (determined to potential large branchiopod habitat) ponded a minimum of 3 centimeters (cm) of standing water. The

3

habitats were first inundated following storm events between December 12-17, 2020 (Weather Underground 2021), therefore wet-season sampling was initiated on December 22, 2020. Wet-season sampling was then continued at a minimum of 14-day intervals until the habitats were dry or 90 continuous ponding days had occurred. In cases when the habitats dried and refilled the 90 days would start over. Specific sampling methods are described below.

Each habitat was viewed for active large branchiopods prior to entering the water. Any large branchiopods observed were quickly netted, viewed with the aid of a 30x hand lens to determine species, and released unharmed back into the environment from which they were obtained. If no large branchiopods were observed, then a semi-quantitative sample was taken to determine the relative abundance of large branchiopods as follows.

A dip net was lowered vertically into the deepest portion of the inundated habitat (usually the center) and rested on the bottom. The 80-um mesh size dip net was then moved in the direction of the longest axis of the habitat for approximately one-meter. In instances where half of the habitat length is less than one meter in length, the dip net was repositioned in the deepest portion of the habitat and moved in the opposite direction for the remainder of the one-meter sample. Given the aperture of the dip net of 0.025 m² and distance the dip net was moved, roughly 0.025 m³ or 25 liters of the water column was sampled horizontally each time. In those cases when the water column was shallower than the dip net aperture height, the volume of water per sweep was calculated by the horizontal distance the net is moved multiplied by the width of the dip net (25cm) multiplied by the depth of water. After the completion of each sample sweep, the contents of the net were examined for large branchiopods. All large branchiopods captured in the dip net were identified to the lowest justifiable taxon in the field, and recorded on standardized data sheets. The relative numbers of individuals observed within each taxonomic group was recorded in one of five categories: rare (≤ 2 individuals), not common (3-10 individuals), common (11-50 individual), very common (51 -100 individuals), and abundant (>100 individuals). This method allows for the relative abundances and richness of large branchiopods to be compared between and among wetlands through time. Additionally, this method allows for concentration estimates of large branchiopods to be calculated as number of individuals per liter of water (= number of individuals/net aperture area x length of sweep).

If federally-listed large branchiopods were not detected during the semi-quantified sampling method, then the entire habitat was sampled as follows. Starting at one end of the habitat, the net was moved from one side of the habitat to the other in a zigzag fashion, until the opposite end of the habitat was reached. During this procedure, the net was often bounced along the habitat bottom (to encourage large branchiopods to move up into the water column from hiding places for easier capture) and viewed often for evidence of large branchiopods. If still no federally listed large branchiopods were captured, then additional netting took place in specific locations within the habitat that may have not been sampled during prior efforts. Additional taxonomic groups of large branchiopods detected using this alternative method is noted as present by an "X" on the standardized field data sheet. After the taxonomic identification and enumeration were

4

Ph: (530) 633-0220

completed, the contents of the net were placed back into the habitat from which they were collected.

Data concerning air and water temperatures, present depths (maximum and average [ft]), present ponding surface area (percent inundation), and habitat conditions were collected during each field visit. The potential depths (maximum and average [ft]) and potential ponding surface area percentage were visually estimated. Additionally, presence and abundance data were recorded for all other aquatic species using the same methods as described above for large branchiopod sampling. Representative photographs were taken of the habitats sampled and species observed.

RESULTS

A total of 40 basins were evaluated for their potential to support federally-listed large branchiopods (Exhibit B). After the first three sampling rounds (December 22, 2020; January 5 and 19, 2021), it was determined that twenty-one (21) of these basins (D-3, D-5, D-7, D-8, D-9, P-1, P-2, P-3, P-4, P-5, P-6, P-7, P-8, P-9, P-10, P-11, P-12, P-13, P-14, RC-1, and RC-2) were not considered suitable habitat for federally-listed large branchiopods because they are semi-to-permanently inundated areas that support populations of perennial aquatic predators (e.g., fish and crayfish). Most of these habitats are hydrologically connected via a roadside ditch. Fish and crayfish were observed in several of these habitats during wet-season sampling (Appendix B). Additionally, conversations with the site manager revealed that all of the onsite perennial ponds, freshwater emergent wetlands, open water habitats and the ditches connecting them are annually stocked with western mosquitofish (*Gambusia affinis*) for mosquito abatement.

Eleven basins from the aquatic resources map (D-1, D-2, D-4, D-6, P-1, SW-1, SW-2, SW-3, SW-4, SW-5, and SW-6) and eight additional basins (HBC-1, HBC-2, HBC-3, HBC-4, HBC-5, HBC-6, HBC-7, and HBC-8) are ephemeral and were considered potential habitat for federally-listed large branchiopods and therefore wet-season sampling was continued. During wetter years, P-1 likely inundates more completely and would also be stocked with western mosquitofish. However, since P-1 is hydrological isolated from the interconnected system of ponds and ditches onsite, wet-season sampling was conservatively continued within this habitat.

Of the 19 habitats that had potential to support large branchiopods, only two basins (D-4 and P-1) ponded for any duration during the 2020/2021 wet-season. After all seven rounds of wet-season sampling, no federally-listed large branchiopods were detected within the habitats sampled. Field data forms from each wet-season sampling date are provided in Appendix B. Representative photographs of the habitats sampled are provided in Appendix C.

LITERATURE CITED

Google Earth[©]. 2021. V 7.3.3.7786. Available at http://www.earth.google.com.

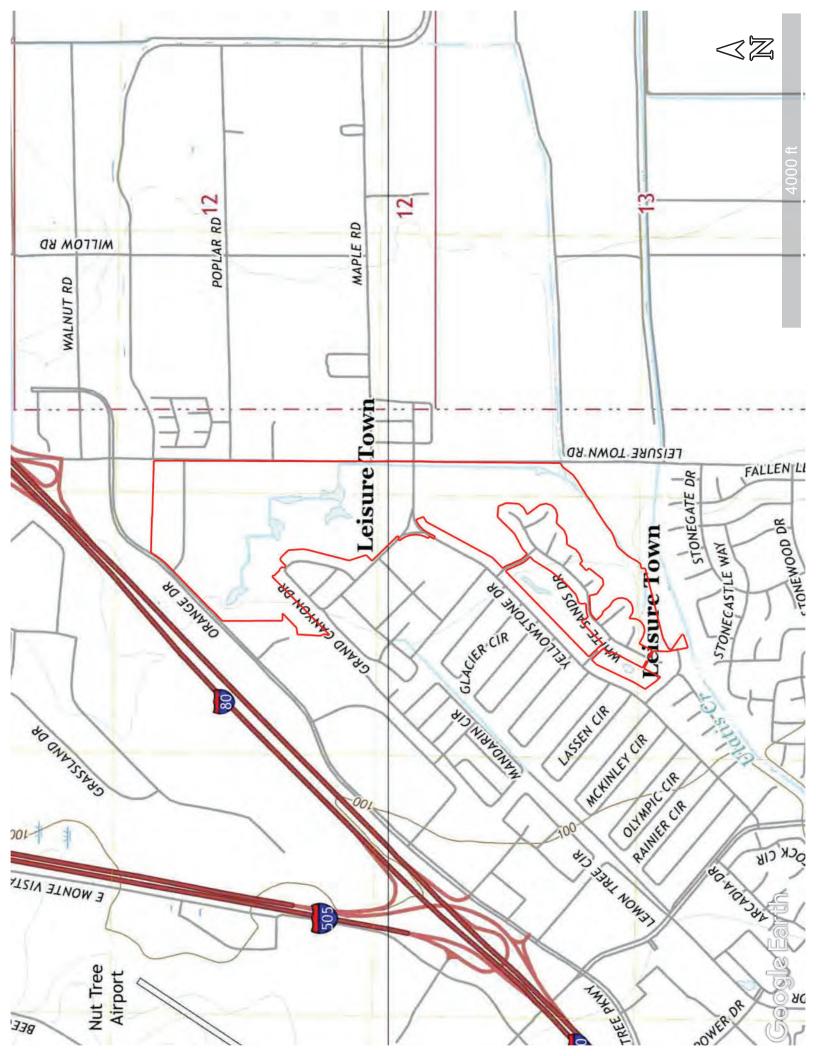

- Moore Biological Consultants. 2021. Aquatic Resources, Greentree Development Project, City of Vacaville, Solano County, CA. Dated: 05/19/2021.
- U.S. Department of the Interior, U.S. Fish and Wildlife Service (USFWS). 2017. Survey guidelines for the listed large branchiopods. 24 pp. Dated: 31 May 2015 (Revised November 13, 2017)
- Weather Underground. 2021. Weather History for Vacaville, CA. Nut Tree Station. Available online: https://www.wunderground.com/history/monthly/KVCB/date/1982-1

EXHIBIT A.

LOCATION OF STUDY AREA ON
USGS TOPOGRAPHIC QUADRANGLE MAP
(RED BOUNDARY = STUDY AREA LOCATION)

Ph: (530) 633-0220



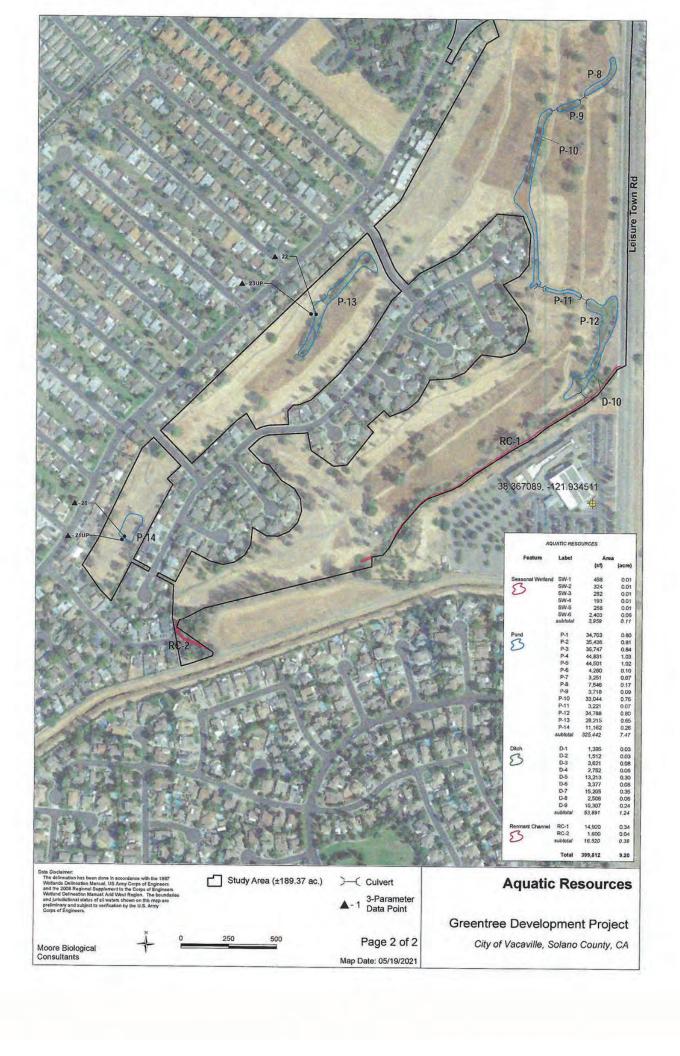


EXHIBIT B.

AQUATIC RESOURCES
GREENTREE DEVELOPMENT PROJECT
(MOORE BIOLOGICAL CONSULTING 2021)

Ph: (530) 633-0220

APPENDIX A. USFWS AUTHORIZATION LETTER

Ph: (530) 633-0220

Sean O'Brien <sobrien@tansleyteam.com>

USFWS Sampling Request for Helm Biological Consulting (TE-795930-10.2) - Green **Tree Project**

Lantz, Samantha M <samantha lantz@fws.gov>

Thu, Dec 17, 2020 at 8:25 AM

To: Sean O'Brien <sobrien@tansleyteam.com>

Hi Sean and Brent,

By this email message, you are authorized to conduct 2020-2021 protocol-level vernal pool branchiopod surveys (dry and wet-season), as specified in your December 14, 2020 email request and per the conditions of your recovery permit (TE-795930). Surveys will be conducted at the Green Tree Project in Solano County, CA.

Surveys may be conducted within all areas identified on-site that may provide suitable habitat. Please remember to carry a copy of your permit while doing the work and to follow the terms and conditions of the permit, including the reporting requirements. In your report(s), please include which activities were authorized, the names of all persons involved in each activity, their recovery permit numbers, if applicable, and the date of this authorization, to help ensure that we correctly record the fulfillment of the reporting requirement under this authorization. Please let us know if the activities are not performed as authorized, or if they are done by a different permittee under a separate authorization. This authorization does not include access to the property which must be arranged with the landowner or manager. Please send electronic copies of the report(s) to Sam Lantz (samantha lantz@fws.gov) and Michelle Havens (michelle havens@fws.gov) and use Service reference number 2021-TA-0570 in future correspondence for these surveys.

Thanks,

Sam

Samantha Lantz, PhD Fish and Wildlife Biologist USFWS, Sacramento Field Office Listing and Recovery Division 2800 Cottage Way W-2605 Sacramento, CA 95825-1888

Phone: 916-414-6526 Pronouns: she/her/hers

In an effort to slow the spread of the coronavirus (COVID-19), staff in the Sacramento Fish and Wildlife Office have implemented an aggressive telework schedule. At this time, we are responding to requests for information via email or phone as often as possible as we do not have the in-office capacity to support regular mail service. We appreciate your understanding.

From: Sean O'Brien <sobrien@tansleyteam.com>

Sent: Monday, December 14, 2020 11:33 AM

To: Lantz, Samantha M <samantha_lantz@fws.gov>

Cc: Brent Helm <bhelm@tansleyteam.com>

Subject: [EXTERNAL] USFWS Sampling Request for Helm Biological Consulng (TE -795930-10.2) - Green Tree Project

This email has been received from outside of DOI - Use caution before clicking on links, opening attachments, or responding.

[Quoted text hidden]

APPENDIX B. WET-SEASON FIELD DATA FORMS

Ph: (530) 633-0220

Project: Green Tree Project						o)	urveyo	Surveyor(s): O'Brien	J'Brien	_							G	Quad: Allendale and Elmira	andale a	nd Elmi	52				Cour	County: Solano	out					
Date: 12/22/2020						۰ -	Veather	Weather Cond: 10% cloud cover	10%	cloud	cover							Township: 6 North	: 6 Nort	£					Lat:	38.3791	ļ					
TITLE: 12:00 PIN 10 3:00 PIN						1	III Ielli	Air lemperature(r). 59	(L)	200							-	Range: I west	West						Long	Long.: -121.3372	2/5					
Abundance: R = Rare (42 individuals), NC = Not Common (3-10 individuals), C = Common (11-50 individuals), VC = Very Common (51-100 individuals), A = Abundant (>100 individuals)	als), NC = Not	Common (3	3-10 individuals	s), C = C) uommo	11-50 in	dividual.	s), VC =	Very C	ommo	(51-100	ndividua	ls), A = A	bundant	(>100 inc	ividuals)				Habitat	t Conditi.	on: ND =	undistur	ped, D = (disturbe	Habitat Condition: UD = undisturbed, D = disturbed - tt = tire tracks, t = trash, p = plowing	tracks, t	= trash, p	= plowir.	ō		
Hydrology: D = dry, NP = not ponding. M=moist, S = saturated to surface, VP = intermittent ponding, X = Present but not observed in 1 meter sample	iding, M=moist	t, S = satura	ated to surface,	, VP = in	termitten	t pondir	ng, X = P	resentb	out not c	observe	din 1 m	eter samp	ol.							n = 90	ıngrazed,	, G = gra	zed - C =	cattle, H	= horse	UG = ungrazed, G = grazed - C = cattle, H = horse, S = sheep, I = light grazing,	p, I = light	grazing,				
LB Redroductive Status: i = immature, m = mature, g = gravid (with eggs)	ture, m = matu	re, g = gravi	rid (with eggs)																	I = ligh	it grazing	g, m = m	derate g	I = light grazing, m = moderate grazing, h = heavy grazing	= heavy	grazing						
	Precent Denth	Potential						C	90								2	apaga					Molline	60	Turbell	Anari	Colle		Torse			
	(inches)				Copep	spo.	۲	Clustacea	18	Branchio	iopods (LB)		\parallel	Coleopi	era	Hemi	tera	a cid	Odanota	Dipi	tera	+	1		Т	ACGIL			9			
Water Temp Feature No. (°F)	xsM .evA	xsM .evA	Surface Area Inundation (% of maximum)	Ostracods	Calanoida	Cyclopoda	Cladocera	2017	A788	BRME	∀d∃7	CACV	Dytiscidae	Hydrophilidae	Haliplidae	Notonectidae	Corixidae	Ephemeroptera Zygoptera	snetqosinA	Culicidae	Chironomidae	Trichoptera	Physidae	Planorbidae	Micro-turbularia	Hydracarini	Other	Pseudacris	Other	Habitat	Comments	
				L		t	t	l	l	t	H	H	H	L	L		l				İ	t	-	L	L	L		L				
				L	L		H			H											İ	H				L		L				
D-3 53	12 7	36+ 36+	+	L		l	l														ľ											
D-4 54	10 5	24 12	2 25			H											×															
	8	36+ 36+	+ 2																													
				L		r															Ī											
D-7 54	36+ 36	36+ 36+	L	L		H	۲			H			L					L	L		Ī			L	L		L	L				
	6 4		2			-	_																									
D-9 54	8	36+ 30		L		r															Ī											
D-10 Drv				L		H	۲	-	-	H			L					L					-		L		-	L				
						ŀ							L								İ	H			L	L		-				
P-2 Dry				Ĺ						l											T	H						L				
				Ĺ		t	L		-	H			H				l				T	t		H	L			L				
P-4	36+			L		l	l										S		œ		ľ											
52	36+ 36+	36+ 36+	+ 15	L		H											×		×		ľ											
52	20			L		t	H	F	H	H	H	H	H	L	L		×	-			ľ	H	\mid	L	L	Ĺ	-	L				
53	20												_				×		×													
													_																			
	18 7	36+ 36+																														
P-11 53	4	36+ 36+	+ 2				H														ľ											
51	498 +98	36+ 36+		L	L	t	ŀ	ŀ	H	ŀ	H		L	F	L		×	L	L		İ	f		L	L	L		L				
22	9	36+		ļ	l	t	t	+	t	t	t	+	+	-	-		< ×		-	ļ	İ	t	×	-	-	t	+	+	ļ		Fish (likely Gambusa on) observed	paya
51	_	36+ 36+			Ĺ	t	t		l	t							<			I	İ	H		-		İ		-			Topic (ide propagation Appli)	
-				L		t	-			H	ŀ		-								İ	t			L	L	-	L				
				Ĺ		t		l		t											İ	l				İ		L				
				L	İ	t	H	l		l	l									I	İ	t				İ		-				
Ī	Ī		+	ļ	l	t	t	ł	ł	t	t	l	Ŧ	-	-		t	1	-	ļ	İ	t	l	-	ļ	t	ł	ļ	Ī			
SW Z		1		1	1	t	+	+	+	t	\dagger	+	+	+	1		Ì	+	+	ļ	İ	t	+	+	1	1	+	+	Ī			
Ī		1	1	1	1	†	+	\dagger	\dagger	\dagger	\dagger	+	+	+	1		T	1	\downarrow	ļ	1	\dagger	+	1	1	1	+	+	Ţ			
Ī		1		1	1	†	\dagger	\dagger	\dagger	\dagger	\dagger	\dagger	+	+	1		1	+	+	1	j	\dagger	+	\downarrow	\downarrow	‡	+	+	Ţ			
						1							-															-				
SW 6 Dry													1											1				4				
													_																			
							_																									
				L		H															ľ											
				Ĺ						l											T	H						L				
				L		t	-			H	ŀ		-								İ	t			L	L	-	L				
HBC-6				Ĺ		t		l		t											İ	l				İ		L				
Ī				L	İ	t	H	l		l	l									I	İ	t				İ		-				
Ť				1	1	t	\dagger	\dagger	\dagger	t	\dagger	\dagger	+	+	1		t	+	+	ļ	İ	\dagger	+	+	1	ļ	Ŧ	+	ļ			
0-20L				1		1	+	1	+	1	+	1	+	+	-		1	1	1	ļ		+	1	-	-		1	+				
				_[1	1	1	1		1	1	+	1	-			1	+	1		1	1	1	_	1	1	1				
	_	1				+	+	+	+	-	1	+	4	4			1	_	4	_	1	-	_	_		_	_	_	_			

					ľ].							(1		i					1	1						
Project: Green I ree Project	se Project					survey	Surveyor(s): UBrien	srien	1						5 F	Quad: Allendale and	ndale a	Quad: Allendale and Elmira	E .				County: Sold	County: Solano	0					
Time: 12:00 PM to 3:00 PM	3:00 PM				•	weatne ∿ir Tem	weather Cond: 10% clo Air Temperature(°F): 54	"F): 54	na cove	_					- R	rownsnip: 6 n Range: 1 West	West	=					Lat.: 3	Lat.: 36.3791 Long.: -121.9372	72					
Abundance: R = Rare	Abundance: R = Rare (s2 individuals). NC = Not Common (3-10 individuals). C = Common (11-50 individuals). VC = Very Common (51-100 individuals).	Common (3-10 in	ndividuals), C:	= Common	(11-50 ir	dividua	ls). VC = Ve	rv Comm	on (51-10	10 individu	als). A = A	Vbundant	viduals). A = Abundant (>100 individuals)	riduals)		9		Habitat	Conditio	n: UD = u	undistur	bed. D = q	isturbed	-tt = tire	Habitat Condition: UD = undisturbed. D = disturbed - tt = tire tracks. t = trash. $p = plowing$	trash, p	= plowin			
Hydrology: D = dry,	Hydrology: D = dry, NP = not ponding, M=moist, S = saturated to surface, IP = intermittent ponding, X = Present but not observed in 1 meter sample	st, S = saturated t	to surface, I/P =	= intermitte	int pondi	ng, X = F	Present but	not obse	rved in 1	meter sar) ble							10 = 01	ngrazed,	G = gra	= 0 - pez	cattle, H	= horse, \$	s = sheep	UG = ungrazed, G = grazed - C = cattle, H = horse, S = sheep, I = light grazing,	grazing,				
LB Redroductive Sta	LB Redroductive Status: i = immature, m = mature, g = gravid (with eggs)	ure, g = gravid (w	rith eggs)															l = ligh	t grazing	I = light grazing, m = moderate grazing, h = heavy grazing	derate g	azing, h	= heavy g	razing						
	Present Denth	Potential					Crietanea	_							30	needta					Mollisca	609	Turbell	Acari	Colle		E SCHOOL			
	(inches)		1_	Cope	spods	۲	T	Large Branchiopods (LB)	chiopods	(IB)	H	Coleopi	era	Hemip:	era	2 2	Odanota	Dipt	tera	H	1					L	8			
Feature No.	Water Temp (P)	xsM .evA	Surface Area Inundation (% of	Ostracods	Cyclopoda	Cladocera	BBLY	BRME	∀d∃∏	LYBR	Dytiscidae	Hydrophilidae	Haliplidae	Notonectidae	Corixidae	Ephemeroptera Zygoptera	Rnisoptera	Culicidae	Chironomidae	Trichoptera	Lymnaeidae	Planorbidae	Micro-turbularia	Hydracarini	Other	Pseudacris	Other	Habitat Condition	Comments	
L-0	Duy				П	H		H	Ц	H	H	\parallel		H	H	H			H	H	H			H	H	Н				
0.3	51 10 6	36+ 36+	2									-							ľ	_	NC									
D-4	51 9 4	24 12	20																											
D-5	52 6 3	36+ 36+	-			H			Į		H		ď	Ħ		H				\forall					H					
9 0			L		1	1	ł	1	Ţ		+		1	t	9	+	1	1	2	+	r		1	1	+	1	Ţ			
) - - - - -	33 30+ 30	20+	CI.		İ	t		+	ſ	İ	\dagger	+		t	٤	+	-	ļ	2	\dagger	r		İ		+	+	Ī			
6-0	52 12 8	36+ 30	Z S	NC	l	t				t				t	1				ļ						<u> </u>				Fish (likely Gambusia sp.) observed	
D-10		_				t				ľ	-	L			F	F			T	H	F			H	H	L				
P-1	Dry					l				ľ														l						
P-2	Dy																		l											
P-3	Dry									l										-				H	L	L				
P-4	52 36+ 36+	_	15												NC				NC	_	œ									
P-5	36+	36+	15												NC				×		×									
P-6	36		20			H	H			H	H			h	ပ	H			NC	H	×			H	H	L				
P-7	51 36 26	36+ 36+	20												S				2	_	œ								Immature crayfish observed, amphipods observed	served
P-8	Dry					Ħ					H				H	H			Ħ	H	H			H	H	Ц				
P-9	Dry																													
P-10	50 36 26	36+ 36+	2																											
P-11	20 10	36+ 36+	3			H									2				Ħ					H						
P-12	36+ 30	36+ 36+	7								L	L			-	L			l	H	\vdash			H	L	L				
P-13	36+ 32	36+ 36+	H	O	Ī	O				ľ					S		2		S	Ĺ	O		2	H						
P-14	36+ 36+	36+ 36+	20							l					SC				İ	H				H						
RC-1	Dv					H	-			l	L				L	L			T	\vdash				H	L	L				
RC-2	Dry																													
SW-1	Dy				Ī					ľ									l					H						
SW-2	Dv					H	-			l	L				L	L			T	\vdash				H	L	L				
SW-3	, NO									l									İ	H				H						
SW4	Dis																		ŀ											
SW-R	ò				İ	t		L		İ		L		l	l		L		İ	t	l	L	I	t	L	L	I			
9-WS	20				Ī	T				İ				l					l				I	t	L					
HBC-1					İ	t		-	I	l				l	ŀ				j	ł			ļ	l	1	-	I			
- 0			l		T	t		-	ſ	İ	ł	+		t	ł	1	-		t	t	ł	l	I	t	ł	1	Ī			
HBC-Z	DIY.				1	†		\downarrow	I		+	+]	1	+	+	1		t	+	+	1	1	†	+	1	1			
HBC	S C					1			I		1				1				l				İ		1		1			
HBC 4	ρί			1	1	†			Ţ		+	+		1	+	+	\downarrow	1	1	+	+		1	+	+	4	1			
HBC-5	Dry					1			Ī										1						1					
HBC-6	Dry					1			Ī										1						1					
HBC-7	Dry					1									-	-					-			1	-					
HBC-8	Dry															_														
																								_						
					Γ	H				İ				T	L	L			İ	H	L	_	I	H	L	L	Γ			

Application Application	Project: Green Tree Project	+						σš	Surveyor(s): O'Brien	(s): O'l	Brien	5							Quad:	Quad: Allendale and Elmira	and Eli	mira				Cour	County: Solano	ور				
Habitat Condition: UD = underthold D = underthold O = ungartand. O = greed of = cacing Habitat Condition: UD = underthold D = underthold O = ungartand. O = greed of = cacing H = through Partial O = ungartand. O = greed of = cacing H = through Partial O = ungartand. O = greed of = cacing H = through Partial O = ungartand. O = greed of = cacing H = through Partial O = ungartand. O = greed of = cacing H = through Partial O = ungartand. O = ungartand O = ungarta	Time: 1:00 PM to 2:30 PM							₹ ₹	r Temp	erature.	(°F): 58	2000	_						Range	1 West	5					Long	.: -121.93	72				
The improved of the control of the	Abundance: R = Rare (≤2 individ	duals), NC = N	Not Con	nmon (3-10 i	individuals),	, C = Co	1) momm	11-50 ind	lividuals)	, VC = Ve	ary Comr	mon (51-	100 indivi-	duals), A	= Abunda	nnt (>100	individua	ıls)				itat Cond	ition: UD	= undistu	rbed, D =	disturbe	d - tt = tire 1	tracks, t=	trash, p =	° plowing		
Companies Comp	Hydrology: D = dry, N/P = not pc	onding, M=m	noist, S	= saturated	to surface, I	VP = into	ermittent	t pondin	g, X = Pre	sent bu	not obs	erved in	1 meter s	ample							9	= ungraze	d, G = gr	azed - C :	= cattle, H	l= horse	S = sheep,	, I = light g	ırazing,			
## 1	LB Redroductive Status: i = imm.	nature, m = m	nature, g	g = gravid (v	with eggs)																<u>"</u>	light grazi	ng, m = n	no derate	grazing, h	i = heavy	grazing					
March Marc		Present Dep		Potential						Crustace									nsecta					Wol	SCS	Turbel	Acari			Æ		
March Marc		(inches)	- 1	Inches)		Ľ	Copepo	spo	Н		8	nchiopod.	12	Ħ	Cole	optera	Ĭ	emiptera	E)	Odanot	e.	Diptera	Ĺ	1		Т	1000		L	3		
1		xeM		.9vA	Surface Area Inundation (% of maximum)	Ostracods							7,488	CYCA					Ephemeropte				Trichoptera				Hydracarini	Other			Habitat Condition	Summents
50			L				ľ	H	F			L		T	H	H										L		F		l		
50 10 10 10 10 10 10 10			H					H			L			Ħ																		
25 26 24 24 24 24 24 24 24		œ	\dashv		က		_	+	+	1		-		1	1	1	1				1			×				1]			
10 10 10 10 10 10 10 10		2 2	+		Ω-	I	t	\dagger	+	+	+	+		\dagger	\dagger	+	+	1			+	×						+	I	\dagger		
10 10 10 10 10 10 10 10		2	+			I		ŀ			-			İ		+																
DAY DD V C X X NC DAY DD V NC N		36+	⊢		12		ľ	H	×		L			T	H	H	L	×				×		SC		×		H		l		
DAY Color			Н					H	H					H		H																
DAY DAY DAY DAY DAY DAY DAY DAY		10	⊣	- 1	2	ပ		\dashv	×	\downarrow	\downarrow	\downarrow		1	1	-	\downarrow	×			1			1	-	×		\downarrow]	1		
DIAY DIAY DIAY DIAY DIAY DIAY BASH 364- 364- 364- 15 NC SEZ 386- 364- 364- 15 NC DIAY NC			4					\dagger	1	+	1	1		1		1	+											1]			
NA 194			1						1				I																			
53 36+ 36+ 36+ 36+ 15 NC			\downarrow							$\frac{1}{2}$		\parallel		1	1	$\frac{1}{1}$	+											$\frac{1}{1}$				
52 364 364 364 15		0					1	+	9	+	+	\downarrow	I	\dagger		+	+	0		1	+						+	+	1	1		
52 304 304 304 304 304 305 304 304 15 X NC		30+			Ωļ	I		ľ	اد	1	1	-		1	1	1	+	: د			1	≥;		< ι				1	ļ	1		
10		+0¢			U 4	>	t	†	< دِ	+	+	1		t	\dagger	\dagger	+	< (ł	+	< >		۲ ک		2	\dagger	+	ļ	\dagger		
Dividing to the control of the con		38	-		5 4	×			< C			-		Ì	t	-		×				ξ		S S		Š						
Div Div		3	+		2		Ì	ŀ	0													2		2		2				l		
62 10 50 364 364 2 N<			L						L																					l		
62 30 5 364 366 2 364 366 3 364 366 3 364 366 3 364 366 367 3 <td></td> <td>30</td> <td>-</td> <td>+ 36+</td> <td>2</td> <td>I</td> <td></td> <td></td> <td>×</td> <td></td> <td></td> <td></td> <td></td> <td>l</td> <td></td> <td></td> <td></td> <td>×</td> <td></td> <td></td> <td></td> <td>×</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>F</td> <td></td> <td></td>		30	-	+ 36+	2	I			×					l				×				×								F		
Fig. 28 284		10	-	+ 36+	2													œ														
64 364 364 364 15 C C C C C C C C C C C C C C C C C C		36	_	+ 36+	2		ľ	É	Ş	L		L				\vdash	L	×				×				S		L		H		
65 36+		36+		+ 36+	15	O		H	O					h				O			×	×		O		O						
		36+			20			1	×	-	-	_		1	1	-	4	×			-	×						-				
			_																													
			4														-															
			\downarrow					\forall	\dashv	\downarrow				1	1		\downarrow	\downarrow			+	4		1	4	4		\downarrow]	1		
												4			1	1																
			4					-	-		4	_					_	4														
			_						_																							
																														L		
			L				f	F	L	L		L		T		F	L											L		F		
			L																													
																														L		
			L				f	F	L	L		L		T		F	L											L		F		
																														L		
			L					ŀ	L					İ	F					l	-					L			L	f		
						I																										
]	4	+	1	j	1	1	1	1	1	1	1	1	1	1	1	1]	-	1			-					1	1	1	

Marine 1100 MA 10 MB Marine 1100 MA 10 MB Marine 1100 MA 10 MB Marine 1100 MA 10 MB Marine 1100 MA 10 MB Marine 1100 MA 10 MB Marine 1100 MA 10 MB Marine 1100 M	Project: Green Tree Project					U)	urveyo	Surveyor(s): O'Brien, Helm	Brien,	Helm							ø	uad: A	lendale	Quad: Allendale and Elmira	mira				o.	ounty:	County: Solano	c			
Pabliate Condition De undisturbed, the first strate, p. e riesh, p. e plowing Condition De undisturbed, the first strate, p. e riesh, p. e plowing Condition De undisturbed, the first strate, p. e riesh, p. e plowing Condition De undisturbed, the first strate, p. e riesh, p. e plowing Condition De undisturbed, the first strate, p. e riesh, p. e plowing Condition De undisturbed, the first strate, p. e riesh, p. e plowing Condition Defendance	:00 PM					> «	Veather vir Tem	r Cond: peratuต	Cool, : 9(°F): 5t	slight b	reeze 1	rom no	ŧ				⊢ až	ownshi ange: '	p: 6 No 1 West	orth					ٽ ن	at.: 38. ong.: -1	3791 121.937	7			
10 10 10 10 10 10 10 10	2 individuals), NC = Not	Common (3-	10 individua	ls), C = Cα	ommon ((11-50 in	dividuals	s), VC = \	fery Con.	nomi (51	1-100 ind	viduals),	A = Abur	dant (>1	00 indivi	duals)				Hat	itat Con	dition: U	ID = undis	sturbed,	D = dist	urbed - to	t = tire tr	acks, t=	trash, p =	plowing	
Part	= not ponding, M=mois:	t, S = saturat	ted to surfac	.e, I/P = int	termitter.	nt pondir	ηg, X = P.	resent bu	ut not ob:	served in	n 1 mete	sample								P	= ungra:	zed, G=	grazed -	C = catti	le, H = hα	orse, S =	sheep,	I = light g	razing,		
Marie Mari	: i = immature, m = matu.	ıre, g = gravi.	d (with eggs,	_																=	light gra.	zing, m	= modera	ite grazin	ng, h = he	eavy gra	zing				
Deption	Present Depth	Potential Depth						Crustac	88								- su	ecta					_	Vollusca						go	
A	(inches)	(Inches)			Coper	spod	۲		Large Br.	anchiopo	(FB)		۷	oleoptera	١	Hemipt	٥	е.	Odanota	L	Diptera	H			H	UE	-	L			
11 6 66 60 MONING A CONDICTOR	xeM				Calanoida	Cyclopoda						CYCA	Dytiscidae	Hydrophilidae	esbilqilsH	Votonectidae							Lymnaeidae	Physidae			иучгасагіпі	Other			
2 3 2 5 4 12 5 2 NC NC NC NC NC NC NC NC NC NC NC NC NC	11	+	+	F	Ţ	t	t	ł	+	+		1	I	t	t		t	\dagger	+	+		ļ	ļ	l	ť	ı S	+	+	C	t	
		╁				l	H	ŀ						l	l		H	H	ŀ	H		L			H		H	L		H	
S 2 3 2 3 2 3 3 2 3 3 2 3 3 3 3 3 3 3 3	Dry					r	H								T			-								L	L				
Dy 10 y 1	2	H	L	SC		r	H	\vdash		L			ď		T	H		H	\vdash	Ĺ	Ļ	L			Ē	Ş	L	L	S	H	
Dy By By By By By By By By By By By By By	Dry																														
DY SHORT SHORT SHORT SHOWN SHO	Dry						H	Н							H		H	H		H		L		H	H	H		H			
	Dry																	H								H					
DAY DAY DAY DAY DAY DAY DAY DAY	Dry					1	+	1	\parallel	-				1	1	1	+	1	\dashv	\dashv	\parallel	4		1	1	+	\dashv	4		1	
	Dry									-	-							1		-	-	_				1	-			1	
	Dry										_																				
	Dry																														
	Dry																														
DA AND AND AND AND AND AND AND AND AND A	Dry					T	\vdash	\vdash							T	H		H	\vdash	\vdash		L				H	H	L		-	
Dy Dy Dy Dy Dy Dy Dy Dy Dy Dy Dy Dy Dy D	Dry																	_								_	_				
Dy. Dy. Dy. Dy. Dy. Dy. Dy. Dy. Dy. Dy.	Dry					r	H								T			-		_						L	L				
Dy.	Dry					T	F	F	_	L				Ī	T	F	-	H	L	L	L	L		f	F	H	L	L		L	
Dy Dy Dy Dy Dy Dy Dy Dy Dy Dy Dy Dy Dy D	Dν					r	H								T			-								L	L				
	Dry					r									T			L	_							L	L			-	
	Dry																	H								H					
						ŀ	ļ				L	L			۱	ŀ	l	ļ			ļ	l		ŀ	l		ļ	ļ		ļ	

						Comments																				
						Habitat Condition																				l
	Habitat Condition: UD = undisturbed, D = disturbed - tt = tire tracks, t = trash, p = plowing	6		Herps		Pseudacris					NC															
	= tras	t grazir		Other	H				_	H	_	_			_	-	_	_	H	_		H			H	I
ō ½	racks, t	l = ligh		Colle mbola Otl	H	Other	H	L	_	H	L	H			_	H	_		H		L	H	F	L	H	1
Solar 3791 21.937	= tire t	sheep,	guiz	Co Acari mb	H	шивоопо (F	L	_	H	H	H	H		_	H	_	_	H	_	H	\vdash	F	H	H	ļ
County: Solano Lat.: 38.3791 Long.: -121.9372	ped - tt	'se, S =	wy gra	Turbell aria Ac		Hydracarini Hydracarini	L	L	O	H	O	H	H		_	H	_		H		L	H		L	H	1
L L C	= distur	H= hor	h = hea	Tur	UE	Micro-turbularia	F	L	NC	\vdash	2	Ц	L		_	H	_	_	\vdash	_	L	H	L	L	\vdash	1
	'bed, D:	= cattle,	ırazing,	Isca	F	Planorbidae				\vdash		H				\vdash			\vdash			H	-		\vdash	
	ndistur	= 0 - pa	derate g	Mollusca	F	Physidae	L	L		\vdash	L					\vdash			\vdash		L	H	L	L	\vdash	1
	n = qn	i = graz	n = moc		H	Lymnaeidae	F	L	_	H	L	H	H		_	H	_		H		L	H	L	L	H	1
	ndition.	azed, G	azing, r		H	Trichoptera	F	L	_	H	L	H	H		_	H	_		H		L	H	L	L	H	1
Imira	ojtat Co	UG = ungrazed, G = grazed - C = cattle, H = horse, S = sheep, I = light grazing,	I = light grazing, m = moderate grazing, h = heavy grazing		Diptera	Chironomidae				\vdash		H				\vdash			\vdash			H	-		\vdash	
and E	Hal	9n			Н	Culicidae	F	H	_	\vdash	L	Н	H	_	_	\vdash	_	_	\vdash	_	L	H	L	L	\vdash	1
endale : 6 No West					Odanota	snetqosinA	L			L		H				L			L			L			L	
Quad: Allendale and Elmira Township: 6 North Range: 1 West				Z,	Ц	Zygoptera		L		L	L					L			L		L	L	L	L	L	
Qua Tow Ran				Insecta	h	Ephemeropter		L		L	L					L			L		L	L	L	L	L	
	ls)				Hemiptera	Corixidae			œ	L									L			L			L	
	dividua				He	Notonectidae	L			L		Ц				L			L			L			L	1
	>100 in				ara	Haliplidae				L						L			L						L	
	ndant (Coleoptera	Hydrophilidae										L										1
	A = Abu				Ĺ	Dytiscidae	L			L	œ								L			L			L	
	iduals),	sample				CYCA				Ĺ									Ĺ						Ĺ	
L	o indiv	meter s			(FB)	LYBR	Ĺ	L	L	L	L			_	L	L	L	L	L	L	L	L	L	L	L	
Surveyor(s): O'Brien Weather Cond: 90% cloud cover Air Temperature(°F): 54	n (51-10	ed in 1			Large Branchiopods (LB)	∀d∃7																				
sn cloud 3: 54	Commo	t observ			e Branch	BRME																				Ì
O'Brik d: 90% ure(°F	= Very	t but no.		Crustacea	Larg	BRLY																	Г			İ
Surveyor(s): O'Brien Weather Cond: 90% clo Air Temperature(°F): 54	als), VC	Present		Crus		7100	Ī																Г			İ
Surve) Weathe	ndividus	ng, X =			۲	Cladocera	Ī			l	Г					T			l		Г		Г	Г	l	t
	(11-50 ir	nt pondi			spod	Cyclopoda	Ī				Г					Γ					Г		Γ	Г		t
	mmon (ermitter			Copepods	Calanoida																				t
	° C = C°	VP = int			ľ	Ostracods	Γ				O												Γ			j
	ndividuals)	to surface,	vith eggs)		_	Surface Area Inundation (% of maximum)			15		-			_												
	n (3-10 i	urated	ravid (v.	tial h	(S)	.evA	F	r	12	T	09	H	H			T			T		T	T	F	T	T	ł
	Sommos	S = sat	'e, g = g	Potential Depth	(Inches)	xsM			24	l	96					l			l			l	F		l	
	= Not C	f=moist,	= matur	Depth	es)	.9vA	T		2	T	2	H				r			T			T	F		T	t
	als), NC	nding, M.	ture, m	Present Depth	(inches)	хвМ			2	l	10								l				r		l	t
roject 3 PM	ndividu	not por	= imma			Water Temp	ρ	ρ	25	Dιγ	47	Dry	Dry	Ö	Dry	Dry	Dry	Dry	Dry	Dry	Dry	Dιν	Dry	Dry	Dry	1
Project: Green Tree Project Date: 2/19/2021 Time: 11:00 AM to 1:00 PM	Abundance: R = Pare (42 individuals), NC = Not Common (3-10 individuals), C = Common (11-50 individuals), VC = Very Common (51-100 individuals), A = Abundant (>100 individuals)	Hydrology: D = dry, NIP = not ponding, M=moist, S = saturated to surface, VP = intermittent ponding, X = Present but not observed in 1 meter samp	LB Redroductive Status: i = immature, m = mature, g = gravid (with eggs)									1	2	3	4	2	9	-	.2	6	4	ç	9	-2	φ	1
Project: Green Date: 2/19/2021 Time: 11:00 AM	ndance: R	Irology: D:	Redroductiv			Feature No	D-1	D-2	D-4	D-6	P-1	SW-1	SW-2	SW-3	SW-4	SW-5	9-MS	HBC-	HBC-2	HBC	HBC-4	HBC-2	HBC-6	HBC-7	HBC-8	

County School County Schoo			Ī																												
Newton Cont. 10% cloud cone, wind from SW Towns											Comments																				
Newton Cont. 10% cloud cone, wind from SW Towns										Habitat	ondition																				
Surveyor(s): Helm Weather Cond.; 10% cloud cover, wind from SW Weather Cond.; 10% cloud cover, wind from SW Weather Cond.; 10% cloud cover, wind from SW Township: 6 North Range: 1 West and through a surface, p = intermittent ponding, X = Present but not observed in 1 meter sample Three to be and the surface of the				owing				Τ			0							_			_										
Surveyor(s): Helm Weather Cond.; 10% cloud cover, wind from SW Weather Cond.; 10% cloud cover, wind from SW Weather Cond.; 10% cloud cover, wind from SW Township: 6 North Range: 1 West and through a surface, p = intermittent ponding, X = Present but not observed in 1 meter sample Three to be and the surface of the				ih, p = pl	ng,			SIDL																							
Surveyor(s): Helm Weather Cond.; 10% cloud cover, wind from SW Weather Cond.; 10% cloud cover, wind from SW Weather Cond.; 10% cloud cover, wind from SW Township: 6 North Range: 1 West and through a surface, p = intermittent ponding, X = Present but not observed in 1 meter sample Three to be and the surface of the				, t = tras	ht grazi		1	DI IC		Invertebrate		H						h			h			H			-				
Surveyor(s): Holm Wester Connect (1900 cloud cover, wind from SW Wester Common (3-10 individuals), C = Common (11-60 individuals), C = Very Common (3-10 individuals), C = Common (11-60 individuals), C = Very Common (3-10 individuals), C = Very	out	372	4	tracks,	p, I = lig					30410		r												r			l				T
Surveyor(s): Holm Wester Connect (1900 cloud cover, wind from SW Wester Common (3-10 individuals), C = Common (11-60 individuals), C = Very Common (3-10 individuals), C = Common (11-60 individuals), C = Very Common (3-10 individuals), C = Very	: Sola	3.3791	2	tt = tire	= shee	razing]	- P		Hydracarini		r												r			l				T
Surveyor(s): Holm Wester Connect (1900 cloud cover, wind from SW Wester Common (3-10 individuals), C = Common (11-60 individuals), C = Very Common (3-10 individuals), C = Common (11-60 individuals), C = Very Common (3-10 individuals), C = Very	County	Lat.: 38		turbed.	horse, S	heavy g		+	ue	nsluchut-onoi	M	T			T	O		l			l			T			T				T
Surveyor(s): Holm Wester Connect (1900 cloud cover, wind from SW Wester Common (3-10 individuals), C = Common (11-60 individuals), C = Very Common (3-10 individuals), C = Common (11-60 individuals), C = Very Common (3-10 individuals), C = Very			1	D = dis	tle, H=1	ng, h = l		t		9ebidionsI9		l	Г		Ī	Г		T			T			l			T				T
Surveyor(s): Holm Wester Connect (1900 cloud cover, wind from SW Wester Common (3-10 individuals), C = Common (11-60 individuals), C = Very Common (3-10 individuals), C = Common (11-60 individuals), C = Very Common (3-10 individuals), C = Very				sturbed,	C = cat;	te grazi	1	Moliusca		Physidae																					
Surveyor(s): Holm Wester Connect (1900 cloud cover, wind from SW Wester Common (3-10 individuals), C = Common (11-60 individuals), C = Very Common (3-10 individuals), C = Common (11-60 individuals), C = Very Common (3-10 individuals), C = Very				= undi	razed-	modera	Ĺ	İ	6	Lymnaeidae																					
Surveyor(s): Holm Wester Connect (1900 cloud cover, wind from SW Wester Common (3-10 individuals), C = Common (11-60 individuals), C = Very Common (3-10 individuals), C = Common (11-60 individuals), C = Very Common (3-10 individuals), C = Very				tion: UD	d, G=g	ng, m =		l		EnetqodoinT																					
Surveyor(s): Holm Wester Connect (1900 cloud cover, wind from SW Wester Common (3-10 individuals), C = Common (11-60 individuals), C = Very Common (3-10 individuals), C = Common (11-60 individuals), C = Very Common (3-10 individuals), C = Very	ra			t Condi	ıngraze	ht grazii		dono	Stera	ebimononid	cı																				
Weeker Coard Council C	d Elmi		L	Habita	UG = L	l = lig		Ĉ	ă	Culicidae						×															
Weeker Coard Council C	lendale an	p: 6 North 1 West	16944					Odopoto	Odanota		_																				
Weeker Coard Council C	ad: A	wnshi					1	acta	E)		-	H		_			_	H	_	_	H		_	H	_		F			H	H
Surveyor(s): Helm Weather Cond.; 10% cloud cover, wind from SW Weather Cond.; 10% cloud cover, wind from SW Weather Cond.; 10% cloud cover, wind from SW Weather Cond.; 10% cloud cover, wind from SW Weather Cond.; 10% cloud cover, wind from SW Weather Cond.; 10% cloud cover, wind from SW Weather Cond.; 10% cloud cover, wind from SW Weather Cond.; 10% cloud cover, wind from SW Weather Cond.; 10% cloud cover, wind from SW Present Open Sample State Sta	ਰ	To Ra		·				Г	1		_					S															
Project: Green Tree Project Proj				lividual				1	Ē	otonectidae	N	L												L							
Project: Green Tree Project Project Project Project Project Project Green Tree Project Green Tree Project Green Project Green				-100 inc				9	D.	Haliplidae	ı																				
Project: Green Tree Project Project Project Project: Green Tree Project: Green Tree Project: Green Tree Project: Green Tree Project: Green Tree: 1:00 PM to 3:00 PM Project: Green Tree: 1:00 PM to 3:00 PM Project: Green Tree: 1:00 PM to 3:00 PM Project: Green Tree: 1:00 PM to 3:00 PM Project: Green Tree: 1:00 PM to 3:00 PM Project: Green Tree: 1:00 PM to 3:00 PM Project: Green Tree: 1:00 PM to 3:00 PM Project: Green Tree: 1:00 PM to 3:00 PM Project: Green Tree: 1:00 PM to 3:00 PM Project: Green Tree: Gre				ndant (>				ologopho	neopte	ydrophilidae	Н																				
Project: Green Tree Project Proj		NS.		۸ = Abu				ĺ		Oytiscidae)					×															
Project: Green Tree Project New York		from		duals),	ample			Ī	Ī	CYCA												_									
Project: Green Tree Project Proj		r, wind		00 indivi	meter s.			10	9	TYBR																					
Project: Green Tree Project Proj		cover		n (51-10	ed in 1			- opood	Spodoli	∀d∃7																					
Project: Green Tree Project Project		cloud	3	Commo	t observ			o Dropoph	e Branci	BRME																					
Project: Green Tree Project Project	Helm	d: 10%		= Very	t but not			alduced	Larg	BRLY																	Ī				
Project: Green Tree Project Wash	/or(s):	er Con	200	als), VC	Present			ŝ	İ	7000																	Ī				
Project: Green Tree Project	Surve	Weath Air Ter	2	ndividu	ing, X =			ľ	•	Cladocera			Г		Ī	O		Γ			Γ						Ī				Γ
Project: Green Tree Project				mon (11-50 i.	nittent pond			Popopood	cobedoos		_																				
Times : 150 PR No 5:00 PM				= Com	= inter			F			_	H	H		H	O		\vdash			\vdash			H		L	F	L	L	-	H
Decision Tree Project				dividuals), C	surface, I/P	th eggs)		1			aximum)					-											F				
Detail Strate Detail Strat				mon (3-10 in	= saturated to	= gravid (wi	otential	Johon J	ncnes)	.9vA	E.																				
The tine tine the project				Not Con	noist, S:	nature, g			1		_	L	L					L			L			L		L	L	L	L		L
Dept. 34 Dept. 34), NC = P	ne, M=m	3, m = m	100	inopon)	IICHES)			L						L			L			L			L				
Project Green Tree Pro Date: 3/20/20/21	ect	-		ividuals	t pondir	mmature	-	į ·	1		(L	2	2	Z.	2		Z.	2	2	Z.	2	2	7	2	2	2	2	2	2	2	
Project: Green Tr	se Proj	3.00 PR	3	(<u>\$2</u> ind	N/P = no	tus: i = i.	H			Wé	0	۵	۵	Ω	۵	9	Ω	٥	۵	Ω	٥	۵	Ω		۵	Δ	٥	۵	Δ	Ω	H
	Project: Green Tre	Date: 3/5/2021 Time: 1:00 PM to 3		Abundance: R = Rare	Hydrology: D = dry, N	LB Redroductive Stat					Feature No.	D-1	D-2	D-4	D-6	P-1	SW-1	SW-2	SW-3	SW-4	SW-5	9-MS	HBC-1	HBC-2	HBC-3	HBC-4	HBC-2	HBC-6	HBC-7	HBC-8	

APPENDIX C. REPRESENTATIVE PHOTOGRAPHS

Ph: (530) 633-0220

Photograph of D-8 taken facing northwest on December 22, 2020 (1st sampling round).

Photograph of P-13 taken facing northwest on December 22, 2020 (1st sampling round).

Photograph of P-14 taken facing southwest on December 22, 2020 (1st sampling round).

Photograph of P-1 (dry) taken facing northwest on December 22, 2020 (1st sampling round).

Photograph of P-2 (dry) taken facing northwest on December 22, 2020 (1^{st} sampling round).

Photograph of P-5 taken facing north on December 22, 2020 ($1^{\rm st}$ sampling round).

Photograph of P-12 taken facing northeast on December 22, 2020 (1st sampling round).

Photograph of HBC-3 (dry) taken facing west on December 22, 2020 (1st sampling round).

Photograph of D-4 taken facing west on January 5, 2021 (2nd sampling round).

Photograph of D-6 (dry) taken facing north on January 5, 2021 (2nd sampling round).

Photograph of D-9 taken facing southwest on January 5, 2021 (2nd sampling round).

Photograph of D-5 taken facing south on January 5, 2021 (2nd sampling round).

Photograph of P-13 taken facing southwest on January 5, 2021 (2nd sampling round).

Photograph of P-7 taken facing east on January 5, 2021 (2nd sampling round).

Photograph of juvenile cray fish observed in P-7 on January 5, 2021 (2nd sampling round).

Photograph of P-10 taken facing west on January 5, 2021 (2nd sampling round).

Photograph of SW-6 taken facing northwest on January 5, 2021 (2nd sampling round).

Photograph of D-4 taken facing west on January 19, 2021 (3rd sampling round).

Photograph of P-13 taken facing southwest on January 19, 2021 (3rd sampling round).

Photograph of P-4 taken facing east on January 19, 2021 (3rd sampling round).

Photograph of P-5 taken facing north on January 19, 2021 (3rd sampling round).

Photograph of D-4 taken facing east on February 5, 2021 (4th sampling round).

Photograph of D-6 (dry) taken facing south on February 5, 2021 (4th sampling round).

Photograph of P-1 taken facing northwest on February 5, 2021 (4th sampling round).

Photograph of D-4 taken facing east on February 19, 2021 (5th sampling round).

Photograph of P-1 taken facing northwest on February 19, 2021 (5th sampling round).

Photograph of HBC-4 (dry) taken facing north on February 19, 2021 (5th sampling round).

Photograph of SW-6 (dry) taken facing southwest on March 19, 2021 (7^{th} sampling round).

PROTOCOL-LEVEL DRY-SEASON SAMPLING FOR

FEDERALLY-LISTED LARGE BRANCHIOPODS AT THE

GREENTREE DEVELOPMENT PROJECT, SOLANO COUNTY, CALIFORNIA

Prepared for:

BRISCOE IVESTER & BAZEL, LLP 235 Montgomery Street, Suite 935 San Francisco, CA 94104 Contact: Peter Prows (415) 994-8991

Prepared by:

HELM BIOLOGICAL CONSULTING 4600 Karchner Road Sheridan, CA 95681 Contact: Brent Helm (530) 633-0220

PROTOCOL-LEVEL DRY-SEASON SAMPLING FOR FEDERALLY-LISTED LARGE BRANCHIOPODS AT THE GREENTREE DEVELOPMENT PROJECT, SOLANO COUNTY, CALIFORNIA (USFWS# 2021-TA-0570)

INTRODUCTION

Helm Biological Consulting (HBC), a division of Tansley Team, Inc., was contracted by Briscoe, Ivester, and Bazel, LLC to conduct protocol-level dry-season sampling for large branchiopods (fairy shrimp, tadpole shrimp) that are listed as threatened or endangered under the federal Endangered Species Act (e.g., vernal pool fairy shrimp [*Branchinecta lynchi*] and vernal pool tadpole shrimp [*Lepidurus packardi*]) at the Greentree Development Project (hereafter "Study Area").

The Study Area is comprised of approximately 189.37 acres and is located west of Leisure Town Road, southeast of Orange Drive, and north of Ulatis Creek, in the City of Vacaville, Solano County, California (Exhibit A). Additionally, the Study Area is located within an unsectioned portion of Township 6 North, Range 1 West, Mount Diablo Base and Meridian of the Allendale and Elmira U.S. Geological Survey 7.5-minute quadrangle maps (Exhibit A); approximate center coordinates (World Geodetic System 1984 [WGS84]) are: 38.3791°N, 121.9372°W). The Study Area consists of an abandoned golf course with small ephemeral pools in areas that were not leveled correctly during development and ponds that are associated with the adjacent residential community storm-water system.

Earlier this year, HBC (2021) conducted protocol-level wet-season sampling for federally-listed large branchiopods at the Study Area. In summary, HBC found no evidence of federally-listed large branchiopods onsite.

The remainder of this report discusses the methods and results of the 2021 dry-season sampling for the presence of federally-listed large branchiopods at the Study Area.

Ph: (530) 633-0220

"We certify that the information in this survey report and attached exhibits fully and accurately represents our work."

Signature Suf Cheh Brent P. Helm Date <u>05-21-2021</u>

(TE-795930-10.2)

Sean M. O'Brien Signature _ Date <u>05-21-2021</u>

(TE-795930-10.2)

Ph: (530) 633-0220

METHODS

Methods followed U.S. Fish and Wildlife Service's (USFWS 2017) *Survey Guidelines for Listed Large Branchiopods* (hereafter "Survey Guidelines") for dry-season sampling and consisted of first soil collection and second soil processing and analysis as described below.

SOIL COLLECTION

Mr. Sean O'Brien of HBC conducted dry-season sampling on May 14 and 21, 2021 as authorized by the U.S. Fish and Wildlife Service (USFWS) (Appendix A) under recovery permit TE-795930-10.2 of Section 10(a)(1)(A) of the federal Endangered Species Act, 16 U.S.C. 1531 et seq., and its implementing regulations.

Dry-season sampling was conducted in all basins (habitats) within the Study Area with the potential to support federally-listed large branchiopods as determined during prior wet-season sampling efforts (HBC 2021) with the aid of an aquatic resources map (prepared by Moore Biological Consultants 2021, Exhibit B) and other documents provided by the Client.

Habitat characteristics of large branchiopods are based on the life history of Central Valley endemics (Eriksen and Belk 1999; Helm 1998, 1999; Helm and Vollmar 2002, Helm and Noyes 2016). The presence of water marks, algae mats, driftlines, hydrophytic vegetation ("waterloving plants"), slope, contributing watershed, maximum potential ponding depth, and aquatic arthropods (i.e., crustaceans and insects) exoskeletons were helpful indicators for evidence of ponding depth and duration. Habitats that swiftly flow water (e.g., creeks, streams, and ephemeral drainages), semi-to-permanently inundated areas that support population of predators (e.g., bullfrogs, fish, and crayfish), and habitats that receive water during the dry season (i.e., artificial water sources) were not generally considered suitable habitat for federally listed large branchiopods.

Soil samples were collected mainly from the lowest topographic areas within each sampled basin. Soil samples were placed in liter size plastic sealable bags and marked with the project name, basin, and date. Representative photographs were taken of the basins sampled (Appendix B). The soil was then transported to HBC for processing and analysis as described below.

SOIL PROCESSING AND ANALYSIS

In HBC's laboratory, a brine solution was prepared by mixing table salt (NaCl) with lukewarm tap water in a large container. The collected soil material was placed in the brine solution. The soil material was then gently worked by hand to breakdown any persistent soil structure. The organic material rising to the top of the brine solution was skimmed off and placed in a 600-micron diameter pore-size sieve stacked atop a 75-micron diameter pore-size sieve. The soil material was processed through the top sieve by flushing it with lukewarm tap water while

3

Ph: (530) 633-0220

gently rubbing it with a soft-bristle brush. The soil retained from the 75-micron diameter pore size sieve was then removed and thinly (\approx 1.0 mm) spread into plastic petri dishes.

The contents of each petri dish were examined under a 10 to 252-power zoom binocular microscope. A minimum of 0.5-hour was spent searching the contents of each petri dish for large branchiopod cysts (embryonic eggs). Dr. Helm's large branchiopod cyst reference collection and scanning electron micrographs of cysts (Belk 1989, Brendock *et al.* 2008, Gilchrist 1978, Hill and Shepard 1998, Mura 1991, and Rabet 2010) were used to identify and compare any cysts observed within the soil samples. This processing method (described above) favors the detection of cysts belonging to the genera *Branchinecta*, *Lepidurus*, and *Streptocephalus* since these three genera have species that are federally listed. Evidence of other macroscopic aquatic invertebrates encountered was also noted on the laboratory data sheet.

Ph: (530) 633-0220

RESULTS

SOIL COLLECTION

A total of 19 basins were considered potential habitat for federally-listed large branchiopods and therefore sampled (Exhibit B).

SOIL PROCESSING AND ANALYSIS

Soils collected from a total of 19 basins were analyzed (Exhibit B). No evidence of federally-listed large branchiopods (i.e., cysts belonging to the genus *Branchinecta* or *Lepidurus* or carapaces of *Lepidurus*) were observed in the soils collected (Table 1). Representative photographs of the habitats sampled are provided in Appendix B.

Table 1. Results of Soil Examinations at the Greentree Development Project

			Inve	rtebrates Pres	sent (X)		
Basin Number	Insects Exo- skeletons	Micro- turbellarian Cysts	Cladocera Ephippia	Ostracod Cysts/ Carapaces	Hydracarina	Nematoda	Collembola
D-1	Х	Х	Х	Х		Х	Х
D-2	Х	Х	Х				Х
D-4	Х						
D-6	Х						Х
P-1	Х		Х	Х			Х
SW-1	Х						Х
SW-2	Х						Х
SW-3	Х						Х
SW-4	Х						Х
SW-5	Х						Х
SW-6	Х		Х				
HBC-1	Х					Х	Х
HBC-2	Х						Х
HBC-3	Х						Х
HBC-4	Х						Х
HBC-5	Х						
HBC-6	Х						Х
HBC-7	Х						Х
HBC-8	Х						Х

Ph: (530) 633-0220

LITERATURE CITED

- Belk, D. 1989. Identification of species in the Conchostraca genus *Eulimnadia* by egg shell morphology. Journal of Crustacean Biology. 9(1): 115-125.
- Brendock, L., D. C. Rogers, J. Olesen, S. Weeks, and W. R. Hoch. 2008. Global diversity of large branchiopods (Crustacea: Branchiopoda) in freshwater. *Hydrobiologia*. 595: 167-176.
- Eriksen, C. H., and D. Belk. 1999. Fairy shrimps of California's puddles, pools, and playas. Mad River Press, Inc. Eureka, CA. 196 pp.
- Gilchrist, B. M. 1978. Scanning electron microscope studies of the egg shell in some Anostraca (Crustacea: Branchiopoda). Cell Tiss. Res., 193: 337-351.
- Helm Biological Consulting (HBC). 2021. Protocol-level Wet-season Sampling for Federally-Listed Large Branchiopods at the Greentree Development Project, Solano County, California (USFWS# 2021-TA-0570).
- Helm, B. P. 1998. Biogeography of eight large branchiopods endemic to California. Pages 124-139 *in* Witham, C. W., E. T. Bauder, D. Belk, W.R. Ferren Jr., and R. Ornduff. (eds.). *Ecology, conservation, and management of vernal pool ecosystems* –proceeding from a 1996 conference. California Native Plant Society, Sacramento, CA. 285 pp.
- Helm, B. P. 1999. Feeding ecology of *Linderiella occidentalis* (Dodds) (Crustacea: Anostraca). Doctoral thesis. University of California, Davis. 158 pp.
- Helm, B. P., and J. E. Vollmar. 2002. Vernal pool large brachiopods. Pages 151-190 *in* John E. Vollmar (ed.). Wildlife and rare plant ecology of eastern Merced County's vernal pool grasslands. Sentinel Printers, Inc. CA. 446 pp.
- Helm, B., and M. Noyes. 2016. California large branchiopod occurrences: A comparison of method detection rates. Pages 31-56. In: Robert Schlising (ed.). *Vernal Pools in changing landscapes: from Shasta to Baja* –proceeding from a 2014 conference. AquaAlliance, Chico, California. 291 pp.
- Hill, R. E., and W. D. Shepard. 1998. Observation on the identification of California anostracan cysts. *Hydrobiologia*, 359: 113-123.
- Mura, G. 1991. SEM morphology of resting eggs in the species of the genus *Branchinecta* from North America. J. *Crust. Biol.*, 11: 432-436.

Ph: (530) 633-0220

- Rabet, N. 2010. Revision of the egg morphology of *Eulimnadia* (Crustacea, Branchiopoda, Spinicaudata). *Zoosystema*, 32 (3): 373-391.
- Moore Biological Consultants. 2021. Aquatic Resources, Greentree Development Project, City of Vacaville, Solano County, CA. Dated: 05/19/2021.
- U.S. Department of the Interior, U.S. Fish and Wildlife Service (USFWS). 2017. Survey guidelines for the listed large branchiopods. 24 pp. Dated: 31 May 2015 (Revised November 13, 2017).

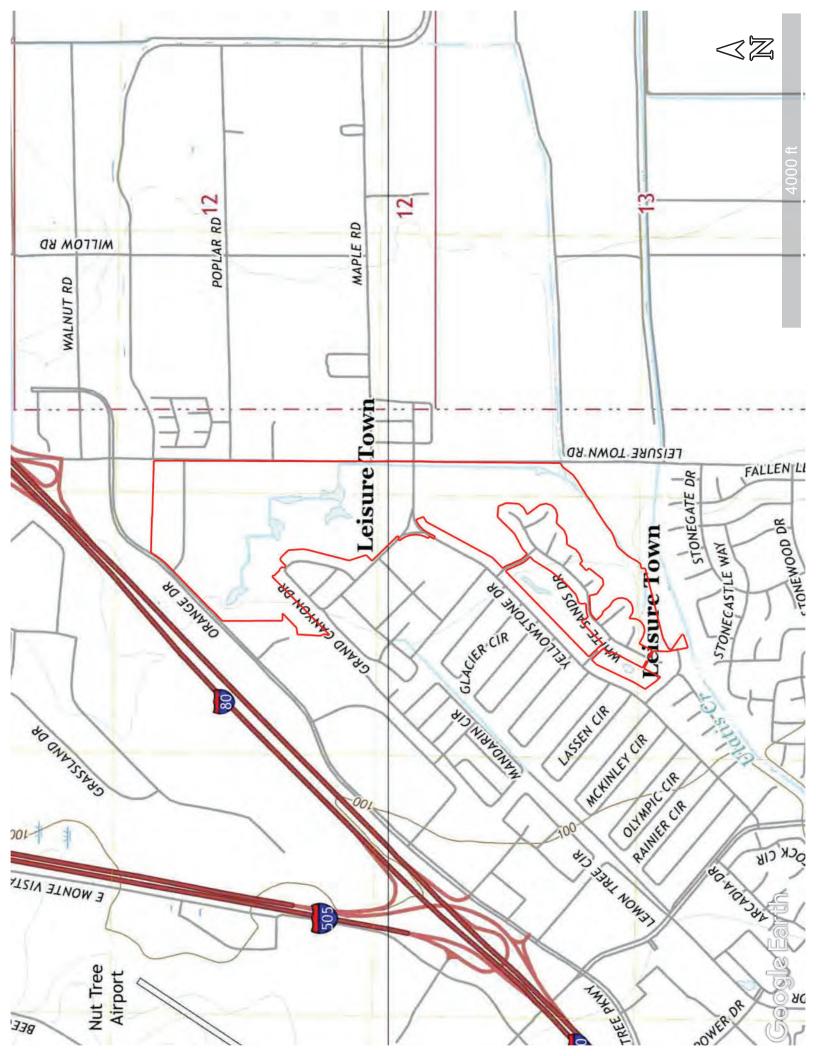

Ph: (530) 633-0220

EXHIBIT A.

LOCATION OF STUDY AREA ON
USGS TOPOGRAPHIC QUADRANGLE MAP
(RED BOUNDARY = STUDY AREA LOCATION)

Ph: (530) 633-0220



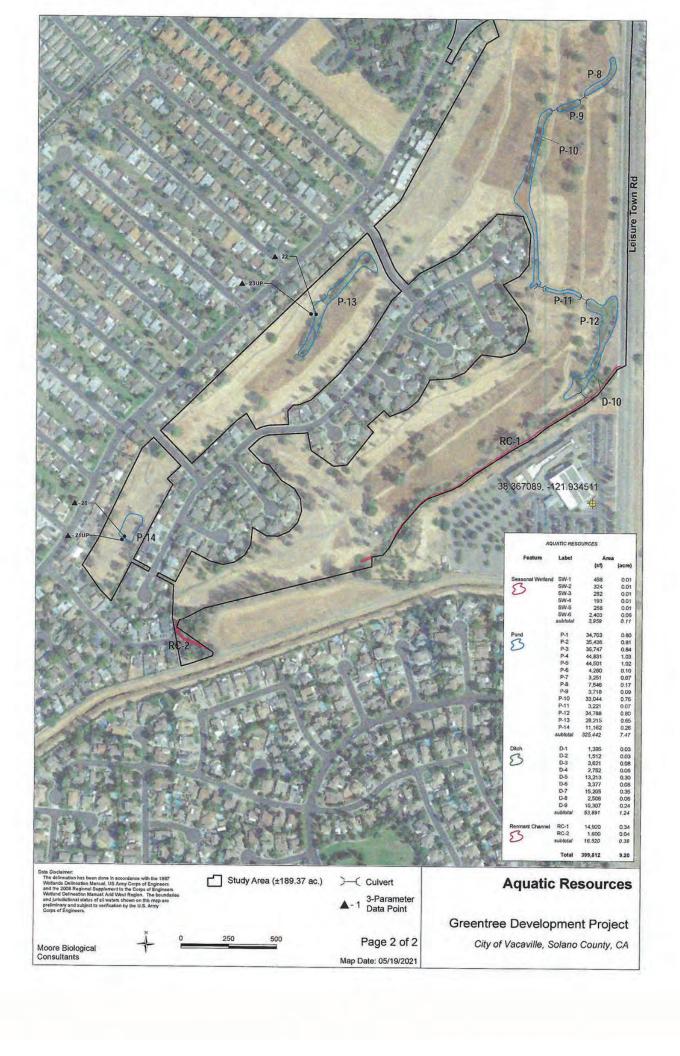


EXHIBIT B.

AQUATIC RESOURCES
GREENTREE DEVELOPMENT PROJECT
(MOORE BIOLOGICAL CONSULTANTS 2021)

Ph: (530) 633-0220

APPENDIX A. USFWS AUTHORIZATION

Ph: (530) 633-0220

Sean O'Brien <sobrien@tansleyteam.com>

USFWS Sampling Request for Helm Biological Consulting (TE-795930-10.2) - Green **Tree Project**

Lantz, Samantha M <samantha lantz@fws.gov>

Thu, Dec 17, 2020 at 8:25 AM

To: Sean O'Brien <sobrien@tansleyteam.com>

Hi Sean and Brent,

By this email message, you are authorized to conduct 2020-2021 protocol-level vernal pool branchiopod surveys (dry and wet-season), as specified in your December 14, 2020 email request and per the conditions of your recovery permit (TE-795930). Surveys will be conducted at the Green Tree Project in Solano County, CA.

Surveys may be conducted within all areas identified on-site that may provide suitable habitat. Please remember to carry a copy of your permit while doing the work and to follow the terms and conditions of the permit, including the reporting requirements. In your report(s), please include which activities were authorized, the names of all persons involved in each activity, their recovery permit numbers, if applicable, and the date of this authorization, to help ensure that we correctly record the fulfillment of the reporting requirement under this authorization. Please let us know if the activities are not performed as authorized, or if they are done by a different permittee under a separate authorization. This authorization does not include access to the property which must be arranged with the landowner or manager. Please send electronic copies of the report(s) to Sam Lantz (samantha lantz@fws.gov) and Michelle Havens (michelle havens@fws.gov) and use Service reference number 2021-TA-0570 in future correspondence for these surveys.

Thanks,

Sam

Samantha Lantz, PhD Fish and Wildlife Biologist USFWS, Sacramento Field Office Listing and Recovery Division 2800 Cottage Way W-2605 Sacramento, CA 95825-1888

Phone: 916-414-6526 Pronouns: she/her/hers

In an effort to slow the spread of the coronavirus (COVID-19), staff in the Sacramento Fish and Wildlife Office have implemented an aggressive telework schedule. At this time, we are responding to requests for information via email or phone as often as possible as we do not have the in-office capacity to support regular mail service. We appreciate your understanding.

From: Sean O'Brien <sobrien@tansleyteam.com>

Sent: Monday, December 14, 2020 11:33 AM

To: Lantz, Samantha M <samantha_lantz@fws.gov>

Cc: Brent Helm <bhelm@tansleyteam.com>

Subject: [EXTERNAL] USFWS Sampling Request for Helm Biological Consulng (TE -795930-10.2) - Green Tree Project

This email has been received from outside of DOI - Use caution before clicking on links, opening attachments, or responding.

[Quoted text hidden]

APPENDIX B. REPRESENTATIVE PHOTOGRAPHS

Ph: (530) 633-0220

Fax: (530) 633-0230

Photograph of D-1 taken on May 14, 2021 (facing southeast).

Photograph of D-2 taken on May 14, 2021 (facing east).

Photograph of D-4 taken on May 14, 2021 (facing west).

Photograph of D-6 taken on May 14, 2021 (facing south).

Photograph of P-1 taken on May 14, 2021 (facing northwest).

Photograph of SW-1 taken on May 21, 2021 (facing east).

Photograph of SW-2 taken on May 21, 2021 (facing west).

Photograph of SW-3 and SW-4 taken on May 14, 2021 (facing north).

Photograph of SW-5 taken on May 14, 2021 (facing west).

Photograph of SW-6 taken on May 14, 2021 (facing northeast).

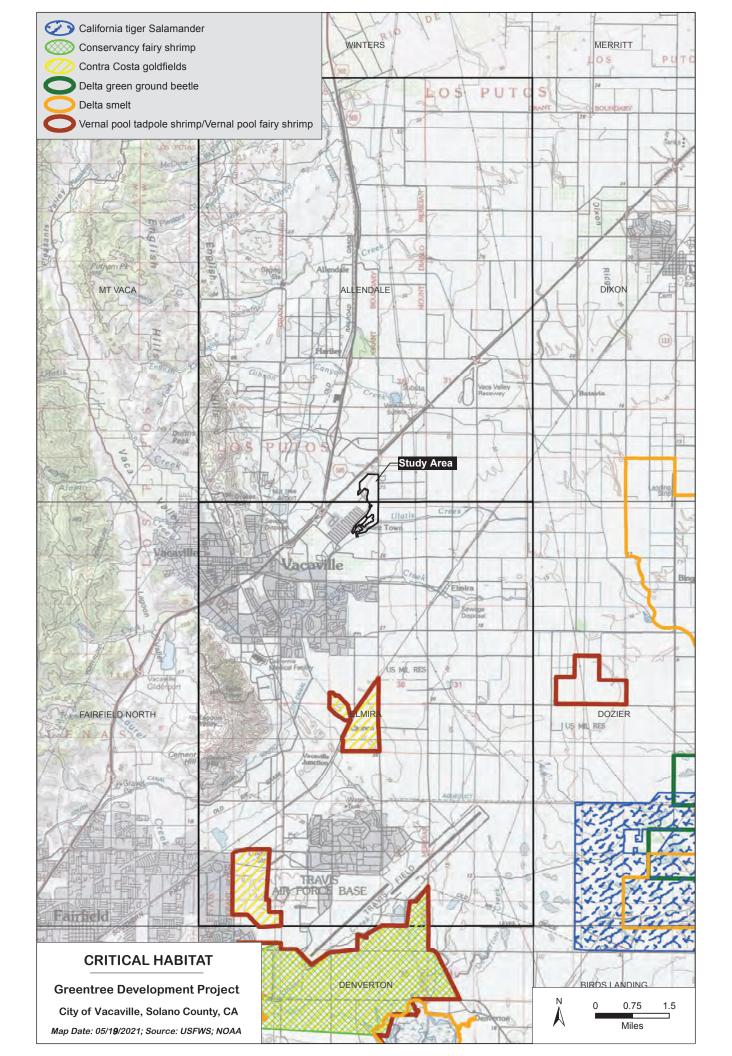
Photograph of HBC-1 taken on May 14, 2021 (facing west).

Photograph of HBC-2 taken on May 14, 2021 (facing west).

Photograph of HBC-3 taken on May 14, 2021 (facing west).

Photograph of HBC-4 taken on May 14, 2021 (facing north).

Photograph of HBC-5 taken on May 14, 2021 (facing east).


Photograph of HBC-7 taken on May 14, 2021 (facing south).

Photograph of HBC-8 taken on May 14, 2021 (facing northeast).

Appendix H

Designated Critical Habitat

